

Welcome to notmuch’s documentation

The notmuch module provides an interface to the notmuch [https://notmuchmail.org] functionality, directly interfacing to a
shared notmuch library. Within notmuch, the classes
Database, Query provide most of the core
functionality, returning Threads, Messages and
Tags.

	License

	This module is covered under the GNU GPL v3 (or later).

	Quickstart and examples

	Interfacing with notmuch

	Status and Errors

	Database – The underlying notmuch database

	Query – A search query

	Messages – A bunch of messages

	Message – A single message

	Tags – Notmuch tags

	Threads – Threads iterator

	Thread – A single thread

	Files and directories

Indices and tables

	Index

	Search Page

Quickstart and examples

Notmuch can be imported as:

import notmuch

or:

from notmuch import Query, Database

db = Database('path', create=True)
msgs = Query(db, 'from:myself').search_messages()

for msg in msgs:
 print(msg)

Interfacing with notmuch

The notmuch module provides most of the functionality that a user is
likely to need.

Note

The underlying notmuch library is build on a hierarchical
memory allocator called talloc. All objects derive from a
top-level Database object.

This means that as soon as an object is deleted, all underlying
derived objects such as Queries, Messages, Message, and Tags will
be freed by the underlying library as well. Accessing these
objects will then lead to segfaults and other unexpected behavior.

We implement reference counting, so that parent objects can be
automatically freed when they are not needed anymore. For
example:

db = Database('path',create=True)
msgs = Query(db,'from:myself').search_messages()

This returns Messages which internally contains a
reference to its parent Query object. Otherwise the
Query() would be immediately freed, taking our msgs down with
it.

In this case, the above Query() object will be automatically freed
whenever we delete all derived objects, ie in our case:
del(msgs) would also delete the parent Query. It would not
delete the parent Database() though, as that is still referenced
from the variable db in which it is stored.

Pretty much the same is valid for all other objects in the
hierarchy, such as Query, Messages,
Message, and Tags.

Status and Errors

Some methods return a status, indicating if an operation was successful and what the error was. Most of these status codes are expressed as a specific value, the notmuch.STATUS.

Note

Prior to version 0.12 the exception classes and the enumeration
notmuch.STATUS were defined in notmuch.globals. They
have since then been moved into notmuch.errors.

STATUS – Notmuch operation return value

	
class STATUS

	STATUS is a class, whose attributes provide constants that serve as return
indicators for notmuch functions. Currently the following ones are defined. For
possible return values and specific meaning for each method, see the method
description.

	SUCCESS

	OUT_OF_MEMORY

	READ_ONLY_DATABASE

	XAPIAN_EXCEPTION

	FILE_ERROR

	FILE_NOT_EMAIL

	DUPLICATE_MESSAGE_ID

	NULL_POINTER

	TAG_TOO_LONG

	UNBALANCED_FREEZE_THAW

	UNBALANCED_ATOMIC

	UNSUPPORTED_OPERATION

	UPGRADE_REQUIRED

	PATH_ERROR

	NOT_INITIALIZED

Invoke the class method notmuch.STATUS.status2str with a status value as
argument to receive a human readable string

	
classmethod status2str(status)

	Get a (unicode) string representation of a notmuch_status_t value.

	
classmethod STATUS.status2str(status)

	Get a (unicode) string representation of a notmuch_status_t value.

NotmuchError – A Notmuch execution error

Whenever an error occurs, we throw a special Exception NotmuchError, or a more fine grained Exception which is derived from it. This means it is always safe to check for NotmuchErrors if you want to catch all errors. If you are interested in more fine grained exceptions, you can use those below.

	
exception NotmuchError(status=None, message=None)

	Is initiated with a (notmuch.STATUS[, message=None]). It will not
return an instance of the class NotmuchError, but a derived instance
of a more specific Error Message, e.g. OutOfMemoryError. Each status
but SUCCESS has a corresponding subclassed Exception.

Return a correct subclass of NotmuchError if needed

We return a NotmuchError instance if status is None (or 0) and a
subclass that inherits from NotmuchError depending on the
‘status’ parameter otherwise.

The following exceptions are all directly derived from NotmuchError. Each of them corresponds to a specific notmuch.STATUS value. You can either check the status attribute of a NotmuchError to see if a specific error has occurred, or you can directly check for the following Exception types:

	
exception OutOfMemoryError(message=None)

	Return a correct subclass of NotmuchError if needed

We return a NotmuchError instance if status is None (or 0) and a
subclass that inherits from NotmuchError depending on the
‘status’ parameter otherwise.

	
exception ReadOnlyDatabaseError(message=None)

	Return a correct subclass of NotmuchError if needed

We return a NotmuchError instance if status is None (or 0) and a
subclass that inherits from NotmuchError depending on the
‘status’ parameter otherwise.

	
exception XapianError(message=None)

	Return a correct subclass of NotmuchError if needed

We return a NotmuchError instance if status is None (or 0) and a
subclass that inherits from NotmuchError depending on the
‘status’ parameter otherwise.

	
exception FileError(message=None)

	Return a correct subclass of NotmuchError if needed

We return a NotmuchError instance if status is None (or 0) and a
subclass that inherits from NotmuchError depending on the
‘status’ parameter otherwise.

	
exception FileNotEmailError(message=None)

	Return a correct subclass of NotmuchError if needed

We return a NotmuchError instance if status is None (or 0) and a
subclass that inherits from NotmuchError depending on the
‘status’ parameter otherwise.

	
exception DuplicateMessageIdError(message=None)

	Return a correct subclass of NotmuchError if needed

We return a NotmuchError instance if status is None (or 0) and a
subclass that inherits from NotmuchError depending on the
‘status’ parameter otherwise.

	
exception NullPointerError(message=None)

	Return a correct subclass of NotmuchError if needed

We return a NotmuchError instance if status is None (or 0) and a
subclass that inherits from NotmuchError depending on the
‘status’ parameter otherwise.

	
exception TagTooLongError(message=None)

	Return a correct subclass of NotmuchError if needed

We return a NotmuchError instance if status is None (or 0) and a
subclass that inherits from NotmuchError depending on the
‘status’ parameter otherwise.

	
exception UnbalancedFreezeThawError(message=None)

	Return a correct subclass of NotmuchError if needed

We return a NotmuchError instance if status is None (or 0) and a
subclass that inherits from NotmuchError depending on the
‘status’ parameter otherwise.

	
exception UnbalancedAtomicError(message=None)

	Return a correct subclass of NotmuchError if needed

We return a NotmuchError instance if status is None (or 0) and a
subclass that inherits from NotmuchError depending on the
‘status’ parameter otherwise.

	
exception UnsupportedOperationError(message=None)

	Return a correct subclass of NotmuchError if needed

We return a NotmuchError instance if status is None (or 0) and a
subclass that inherits from NotmuchError depending on the
‘status’ parameter otherwise.

	
exception UpgradeRequiredError(message=None)

	Return a correct subclass of NotmuchError if needed

We return a NotmuchError instance if status is None (or 0) and a
subclass that inherits from NotmuchError depending on the
‘status’ parameter otherwise.

	
exception PathError(message=None)

	Return a correct subclass of NotmuchError if needed

We return a NotmuchError instance if status is None (or 0) and a
subclass that inherits from NotmuchError depending on the
‘status’ parameter otherwise.

	
exception NotInitializedError(message=None)

	Derived from NotmuchError, this occurs if the underlying data
structure (e.g. database is not initialized (yet) or an iterator has
been exhausted. You can test for NotmuchError with .status =
STATUS.NOT_INITIALIZED

Return a correct subclass of NotmuchError if needed

We return a NotmuchError instance if status is None (or 0) and a
subclass that inherits from NotmuchError depending on the
‘status’ parameter otherwise.

Database – The underlying notmuch database

	
class Database([path=None[, create=False[, mode=MODE.READ_ONLY]]])

	The Database is the highest-level object that notmuch
provides. It references a notmuch database, and can be opened in
read-only or read-write mode. A Query can be derived from
or be applied to a specific database to find messages. Also adding
and removing messages to the database happens via this
object. Modifications to the database are not atmic by default (see
begin_atomic()) and once a database has been modified, all
other database objects pointing to the same data-base will throw an
XapianError as the underlying database has been
modified. Close and reopen the database to continue working with it.

Database objects implement the context manager protocol
so you can use the with [https://docs.python.org/3/reference/compound_stmts.html#with] statement to ensure that the
database is properly closed. See close() for more
information.

Note

Any function in this class can and will throw an
NotInitializedError if the database was not intitialized
properly.

If path is None, we will try to read a users notmuch
configuration and use his configured database. The location of the
configuration file can be specified through the environment variable
NOTMUCH_CONFIG, falling back to the default ~/.notmuch-config.

If create is True, the database will always be created in
MODE.READ_WRITE mode. Default mode for opening is READ_ONLY.

	Parameters

	
	path (str or None) – Directory to open/create the database in (see
above for behavior if None)

	create (bool [https://docs.python.org/3/library/functions.html#bool]) – Pass False to open an existing, True to create a new
database.

	mode (MODE) – Mode to open a database in. Is always
MODE.READ_WRITE when creating a new one.

	Raises

	NotmuchError or derived exception in case of
failure.

	
create(path)

	Creates a new notmuch database

This function is used by __init__() and usually does not need
to be called directly. It wraps the underlying
notmuch_database_create function and creates a new notmuch
database at path. It will always return a database in MODE
.READ_WRITE mode as creating an empty database for
reading only does not make a great deal of sense.

	Parameters

	path (str [https://docs.python.org/3/library/stdtypes.html#str]) – A directory in which we should create the database.

	Raises

	NotmuchError in case of any failure
(possibly after printing an error message on stderr).

	
open(path, status=MODE.READ_ONLY)

	Opens an existing database

This function is used by __init__() and usually does not need
to be called directly. It wraps the underlying
notmuch_database_open function.

	Parameters

	status (MODE) – Open the database in read-only or read-write mode

	Raises

	Raises NotmuchError in case of any failure
(possibly after printing an error message on stderr).

	
close()

	Closes the notmuch database.

Warning

This function closes the notmuch database. From that point
on every method invoked on any object ever derived from
the closed database may cease to function and raise a
NotmuchError.

	
get_path()

	Returns the file path of an open database

	
get_version()

	Returns the database format version

	Returns

	The database version as positive integer

	
needs_upgrade()

	Does this database need to be upgraded before writing to it?

If this function returns True then no functions that modify the
database (index_file(),
Message.add_tag(), Directory.set_mtime(),
etc.) will work unless upgrade() is called successfully first.

	Returns

	True or False

	
upgrade()

	Upgrades the current database

After opening a database in read-write mode, the client should
check if an upgrade is needed (notmuch_database_needs_upgrade) and
if so, upgrade with this function before making any modifications.

NOT IMPLEMENTED: The optional progress_notify callback can be
used by the caller to provide progress indication to the
user. If non-NULL it will be called periodically with
‘progress’ as a floating-point value in the range of [0.0..1.0]
indicating the progress made so far in the upgrade process.

	TODO

	catch exceptions, document return values and etc…

	
begin_atomic()

	Begin an atomic database operation

Any modifications performed between a successful
begin_atomic() and a end_atomic() will be applied to
the database atomically. Note that, unlike a typical database
transaction, this only ensures atomicity, not durability;
neither begin nor end necessarily flush modifications to disk.

	Returns

	STATUS.SUCCESS or raises

	Raises

	NotmuchError: STATUS.XAPIAN_EXCEPTION
Xapian exception occurred; atomic section not entered.

Added in notmuch 0.9

	
end_atomic()

	Indicate the end of an atomic database operation

See begin_atomic() for details.

	Returns

	STATUS.SUCCESS or raises

	Raises

	
	NotmuchError:

	
	STATUS.XAPIAN_EXCEPTION

	A Xapian exception occurred; atomic section not
ended.

	STATUS.UNBALANCED_ATOMIC:

	end_atomic has been called more times than begin_atomic.

Added in notmuch 0.9

	
get_directory(path)

	Returns a Directory of path,

	Parameters

	path – An unicode string containing the path relative to the path
of database (see get_path()), or else should be an absolute
path with initial components that match the path of ‘database’.

	Returns

	Directory or raises an exception.

	Raises

	FileError if path is not relative database or absolute
with initial components same as database.

	
index_file(filename, sync_maildir_flags=False, decrypt_policy=None)

	Adds a new message to the database

	Parameters

	
	filename – should be a path relative to the path of the
open database (see get_path()), or else should be an
absolute filename with initial components that match the
path of the database.

The file should be a single mail message (not a
multi-message mbox) that is expected to remain at its
current location, since the notmuch database will reference
the filename, and will not copy the entire contents of the
file.

	sync_maildir_flags – If the message contains Maildir
flags, we will -depending on the notmuch configuration- sync
those tags to initial notmuch tags, if set to True. It is
False by default to remain consistent with the libnotmuch
API. You might want to look into the underlying method
Message.maildir_flags_to_tags().

	decrypt_policy – If the message contains any encrypted
parts, and decrypt_policy is set to
DECRYPTION_POLICY.TRUE, notmuch will try to
decrypt the message and index the cleartext, stashing any
discovered session keys. If it is set to
DECRYPTION_POLICY.FALSE, it will never try to
decrypt during indexing. If it is set to
DECRYPTION_POLICY.AUTO, then it will try to use
any stashed session keys it knows about, but will not try
to access the user’s secret keys.
DECRYPTION_POLICY.NOSTASH behaves the same as
DECRYPTION_POLICY.TRUE except that no session keys
are stashed in the database. If decrypt_policy is set to
None (the default), then the database itself will decide
whether to decrypt, based on the index.decrypt
configuration setting (see notmuch-config(1)).

	Returns

	On success, we return

	a Message object that can be used for things
such as adding tags to the just-added message.

	one of the following STATUS values:

	STATUS.SUCCESS

	Message successfully added to database.

	STATUS.DUPLICATE_MESSAGE_ID

	Message has the same message ID as another message already
in the database. The new filename was successfully added
to the list of the filenames for the existing message.

	Return type

	2-tuple(Message, STATUS)

	Raises

	Raises a NotmuchError with the following meaning.
If such an exception occurs, nothing was added to the database.

	STATUS.FILE_ERROR

	An error occurred trying to open the file, (such as
permission denied, or file not found, etc.).

	STATUS.FILE_NOT_EMAIL

	The contents of filename don’t look like an email
message.

	STATUS.READ_ONLY_DATABASE

	Database was opened in read-only mode so no message can
be added.

	
remove_message(filename)

	Removes a message (filename) from the given notmuch database

Note that only this particular filename association is removed from
the database. If the same message (as determined by the message ID)
is still available via other filenames, then the message will
persist in the database for those filenames. When the last filename
is removed for a particular message, the database content for that
message will be entirely removed.

	Returns

	A STATUS value with the following meaning:

	STATUS.SUCCESS

	The last filename was removed and the message was removed
from the database.

	STATUS.DUPLICATE_MESSAGE_ID

	This filename was removed but the message persists in the
database with at least one other filename.

	Raises

	Raises a NotmuchError with the following meaning.
If such an exception occurs, nothing was removed from the
database.

	STATUS.READ_ONLY_DATABASE

	Database was opened in read-only mode so no message can be
removed.

	
find_message(msgid)

	Returns a Message as identified by its message ID

Wraps the underlying notmuch_database_find_message function.

	Parameters

	msgid (unicode or str [https://docs.python.org/3/library/stdtypes.html#str]) – The message ID

	Returns

	Message or None if no message is found.

	Raises

	
	OutOfMemoryError

	If an Out-of-memory occurred while constructing the message.

	XapianError

	In case of a Xapian Exception. These exceptions
include “Database modified” situations, e.g. when the
notmuch database has been modified by another program
in the meantime. In this case, you should close and
reopen the database and retry.

	NotInitializedError if

	the database was not intitialized.

	
find_message_by_filename(filename)

	Find a message with the given filename

	Returns

	If the database contains a message with the given
filename, then a class:Message: is returned. This
function returns None if no message is found with the given
filename.

	Raises

	OutOfMemoryError if an Out-of-memory occurred while
constructing the message.

	Raises

	XapianError in case of a Xapian Exception.
These exceptions include “Database modified”
situations, e.g. when the notmuch database has been
modified by another program in the meantime. In this
case, you should close and reopen the database and
retry.

	Raises

	NotInitializedError if the database was not
intitialized.

Added in notmuch 0.9

	
get_all_tags()

	Returns Tags with a list of all tags found in the database

	Returns

	Tags

	Execption

	NotmuchError with STATUS.NULL_POINTER
on error

	
create_query(querystring)

	Returns a Query derived from this database

This is a shorthand method for doing:

short version
Automatically frees the Database() when 'q' is deleted

q = Database(dbpath).create_query('from:"Biene Maja"')

long version, which is functionally equivalent but will keep the
Database in the 'db' variable around after we delete 'q':

db = Database(dbpath)
q = Query(db,'from:"Biene Maja"')

This function is a python extension and not in the underlying C API.

	
get_config(key)

	Return the value of the given config key.

Note that only config values that are stored in the database are
searched and returned. The config file is not read.

	Parameters

	key (str [https://docs.python.org/3/library/stdtypes.html#str]) – the config key under which a value should be looked up, it
should probably be in the form “section.key”

	Returns

	the config value or the empty string if no value is present
for that key

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	Raises

	NotmuchError in case of failure.

	
get_configs(prefix='')

	Return a generator of key, value pairs where the start of key
matches the given prefix

Note that only config values that are stored in the database are
searched and returned. The config file is not read. If no prefix is
given all config values are returned.

This could be used to get all named queries into a dict for example:

queries = {k[6:]: v for k, v in db.get_configs('query.')}

	Parameters

	prefix (str [https://docs.python.org/3/library/stdtypes.html#str]) – a string by which the keys should be selected

	Yields

	all key-value pairs where prefix matches the beginning
of the key

	Ytype

	pairs of str

	Raises

	NotmuchError in case of failure.

	
set_config(key, value)

	Set a config value in the notmuch database.

If an empty string is provided as value the key is unset!

	Parameters

	
	key (str [https://docs.python.org/3/library/stdtypes.html#str]) – the key to set

	value (str [https://docs.python.org/3/library/stdtypes.html#str]) – the value to store under key

	Returns

	None

	Raises

	NotmuchError in case of failure.

	
MODE

	Defines constants that are used as the mode in which to open a database.

	MODE.READ_ONLY

	Open the database in read-only mode

	MODE.READ_WRITE

	Open the database in read-write mode

Query – A search query

	
class Query(db, querystr)

	Represents a search query on an opened Database.

A query selects and filters a subset of messages from the notmuch
database we derive from.

Query provides an instance attribute sort, which
contains the sort order (if specified via set_sort()) or
None.

Any function in this class may throw an NotInitializedError
in case the underlying query object was not set up correctly.

Note

Do remember that as soon as we tear down this object,
all underlying derived objects such as threads,
messages, tags etc will be freed by the underlying library
as well. Accessing these objects will lead to segfaults and
other unexpected behavior. See above for more details.

	Parameters

	
	db (Database) – An open database which we derive the Query from.

	querystr (utf-8 encoded str or unicode) – The query string for the message.

	
create(db, querystr)

	Creates a new query derived from a Database

This function is utilized by __init__() and usually does not need to
be called directly.

	Parameters

	
	db (Database) – Database to create the query from.

	querystr (utf-8 encoded str or unicode) – The query string

	Raises

	
	NullPointerError if the query creation failed

	(e.g. too little memory).

	NotInitializedError if the underlying db was not

	intitialized.

	
SORT

	Defines constants that are used as the mode in which to open a database.

	SORT.OLDEST_FIRST

	Sort by message date, oldest first.

	SORT.NEWEST_FIRST

	Sort by message date, newest first.

	SORT.MESSAGE_ID

	Sort by email message ID.

	SORT.UNSORTED

	Do not apply a special sort order (returns results in document id
order).

	
set_sort(sort)

	Set the sort order future results will be delivered in

	Parameters

	sort – Sort order (see Query.SORT)

	
sort

	Instance attribute sort contains the sort order (see
Query.SORT) if explicitly specified via
set_sort(). By default it is set to None.

	
exclude_tag(tagname)

	Add a tag that will be excluded from the query results by default.

This exclusion will be overridden if this tag appears explicitly in the
query.

	Parameters

	tagname – Name of the tag to be excluded

	
search_threads()

	Execute a query for threads

Execute a query for threads, returning a Threads iterator.
The returned threads are owned by the query and as such, will only be
valid until the Query is deleted.

The method sets Message.FLAG.MATCH for those messages that
match the query. The method Message.get_flag() allows us
to get the value of this flag.

	Returns

	Threads

	Raises

	NullPointerError if search_threads failed

	
search_messages()

	Filter messages according to the query and return
Messages in the defined sort order

	Returns

	Messages

	Raises

	NullPointerError if search_messages failed

	
count_messages()

	This function performs a search and returns Xapian’s best
guess as to the number of matching messages.

	Returns

	the estimated number of messages matching this query

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
count_threads()

	This function performs a search and returns the number of
unique thread IDs in the matching messages. This is the same
as number of threads matching a search.

Note that this is a significantly heavier operation than
meth:Query.count_messages.

	Returns

	the number of threads returned by this query

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

Messages – A bunch of messages

	
class Messages(msgs_p, parent=None)

	Represents a list of notmuch messages

This object provides an iterator over a list of notmuch messages
(Technically, it provides a wrapper for the underlying
notmuch_messages_t structure). Do note that the underlying library
only provides a one-time iterator (it cannot reset the iterator to
the start). Thus iterating over the function will “exhaust” the list
of messages, and a subsequent iteration attempt will raise a
NotInitializedError. If you need to
re-iterate over a list of messages you will need to retrieve a new
Messages object or cache your Messages in a list
via:

msglist = list(msgs)

You can store and reuse the single Message objects as often
as you want as long as you keep the parent Messages object
around. (Due to hierarchical memory allocation, all derived
Message objects will be invalid when we delete the parent
Messages object, even if it was already exhausted.) So
this works:

db = Database()
msgs = Query(db,'').search_messages() #get a Messages() object
msglist = list(msgs)

msgs is "exhausted" now and msgs.next() will raise an exception.
However it will be kept alive until all retrieved Message()
objects are also deleted. If you do e.g. an explicit del(msgs)
here, the following lines would fail.

You can reiterate over *msglist* however as often as you want.
It is simply a list with :class:`Message`s.

print (msglist[0].get_filename())
print (msglist[1].get_filename())
print (msglist[0].get_message_id())

As Message implements both __hash__() and __cmp__(), it is
possible to make sets out of Messages and use set
arithmetic (this happens in python and will of course be much
slower than redoing a proper query with the appropriate filters:

s1, s2 = set(msgs1), set(msgs2)
s.union(s2)
s1 -= s2
...

Be careful when using set arithmetic between message sets derived
from different Databases (ie the same database reopened after
messages have changed). If messages have added or removed associated
files in the meantime, it is possible that the same message would be
considered as a different object (as it points to a different file).

	Parameters

	
	msgs_p (ctypes.c_void_p [https://docs.python.org/3/library/ctypes.html#ctypes.c_void_p]) – A pointer to an underlying notmuch_messages_t
structure. These are not publicly exposed, so a user
will almost never instantiate a Messages object
herself. They are usually handed back as a result,
e.g. in Query.search_messages(). msgs_p must be
valid, we will raise an NullPointerError if it is
None.

	parent – The parent object
(ie Query) these tags are derived from. It saves
a reference to it, so we can automatically delete the db
object once all derived objects are dead.

	TODO

	Make the iterator work more than once and cache the tags in
the Python object.(?)

	
collect_tags()

	Return the unique Tags in the contained messages

	Returns

	Tags

	Exceptions

	NotInitializedError if not init’ed

Note

collect_tags() will iterate over the messages and therefore
will not allow further iterations.

	
__len__()

	

Warning

__len__() was removed in version 0.6 as it exhausted the iterator and broke
list(Messages()). Use the Query.count_messages() function or use len(list(msgs)).

Message – A single message

	
class Message(msg_p, parent=None)

	Represents a single Email message

Technically, this wraps the underlying notmuch_message_t
structure. A user will usually not create these objects themselves
but get them as search results.

As it implements __cmp__(), it is possible to compare two
Messages using if msg1 == msg2: ….

	Parameters

	
	msg_p – A pointer to an internal notmuch_message_t
Structure. If it is None, we will raise an
NullPointerError.

	parent – A ‘parent’ object is passed which this message is
derived from. We save a reference to it, so we can
automatically delete the parent object once all derived
objects are dead.

	
get_message_id()

	Returns the message ID

	Returns

	String with a message ID

	Raises

	NotInitializedError if the message
is not initialized.

	
get_thread_id()

	Returns the thread ID

The returned string belongs to ‘message’ will only be valid for as
long as the message is valid.

This function will not return None since Notmuch ensures that every
message belongs to a single thread.

	Returns

	String with a thread ID

	Raises

	NotInitializedError if the message
is not initialized.

	
get_replies()

	Gets all direct replies to this message as Messages
iterator

Note

This call only makes sense if ‘message’ was ultimately obtained from
a Thread object, (such as by coming directly from the
result of calling Thread.get_toplevel_messages() or by any
number of subsequent calls to get_replies()). If this message
was obtained through some non-thread means, (such as by a call to
Query.search_messages()), then this function will return
an empty Messages iterator.

	Returns

	Messages.

	Raises

	NotInitializedError if the message
is not initialized.

	
get_filename()

	Returns the file path of the message file

	Returns

	Absolute file path & name of the message file

	Raises

	NotInitializedError if the message
is not initialized.

	
get_filenames()

	Get all filenames for the email corresponding to ‘message’

Returns a Filenames() generator with all absolute filepaths for
messages recorded to have the same Message-ID. These files must
not necessarily have identical content.

	
FLAG

	
	FLAG.MATCH

	This flag is automatically set by a
Query.search_threads on those messages that match the
query. This allows us to distinguish matches from the rest
of the messages in that thread.

	
get_flag(flag)

	Checks whether a specific flag is set for this message

The method Query.search_threads() sets
Message.FLAG.MATCH for those messages that match the
query. This method allows us to get the value of this flag.

	Parameters

	flag – One of the Message.FLAG values (currently only
Message.FLAG.MATCH

	Returns

	An unsigned int (0/1), indicating whether the flag is set.

	Raises

	NotInitializedError if the message
is not initialized.

	
set_flag(flag, value)

	Sets/Unsets a specific flag for this message

	Parameters

	
	flag – One of the Message.FLAG values (currently only
Message.FLAG.MATCH

	value – A bool indicating whether to set or unset the flag.

	Raises

	NotInitializedError if the message
is not initialized.

	
get_date()

	Returns time_t of the message date

For the original textual representation of the Date header from the
message call notmuch_message_get_header() with a header value of
“date”.

	Returns

	A time_t timestamp.

	Return type

	c_unit64

	Raises

	NotInitializedError if the message
is not initialized.

	
get_header(header)

	Get the value of the specified header.

The value will be read from the actual message file, not from
the notmuch database. The header name is case insensitive.

Returns an empty string (“”) if the message does not contain a
header line matching ‘header’.

	Parameters

	header (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the header to be retrieved.
It is not case-sensitive.

	Returns

	The header value as string

	Raises

	NotInitializedError if the message is not
initialized

	Raises

	NullPointerError if any error occurred

	
get_tags()

	Returns the message tags

	Returns

	A Tags iterator.

	Raises

	NotInitializedError if the message is not
initialized

	Raises

	NullPointerError if any error occurred

	
get_property(prop)

	Retrieve the value for a single property key

	Parameters

	prop – The name of the property to get.

	Returns

	String with the property value or None if there is no such
key. In the case of multiple values for the given key, the
first one is retrieved.

	Raises

	NotInitializedError if message has not been
initialized

	
get_properties(prop='', exact=False)

	Get the properties of the message, returning a generator of
name, value pairs.

The generator will yield once per value. There might be more than one
value on each name, so the generator might yield the same name several
times.

	Parameters

	
	prop – The name of the property to get. Otherwise it will return
the full list of properties of the message.

	exact – if True, require exact match with key. Otherwise
treat as prefix.

	Yields

	Each property values as a pair of name, value

	Ytype

	pairs of str

	Raises

	NotInitializedError if message has not been
initialized

	
maildir_flags_to_tags()

	Synchronize file Maildir flags to notmuch tags

Flag Action if present
—- —————–
‘D’ Adds the “draft” tag to the message
‘F’ Adds the “flagged” tag to the message
‘P’ Adds the “passed” tag to the message
‘R’ Adds the “replied” tag to the message
‘S’ Removes the “unread” tag from the message

For each flag that is not present, the opposite action
(add/remove) is performed for the corresponding tags. If there
are multiple filenames associated with this message, the flag is
considered present if it appears in one or more filenames. (That
is, the flags from the multiple filenames are combined with the
logical OR operator.)

As a convenience, you can set the sync_maildir_flags parameter in
Database.index_file() to implicitly call this.

	Returns

	a STATUS. In short, you want to see
notmuch.STATUS.SUCCESS here. See there for details.

	
tags_to_maildir_flags()

	Synchronize notmuch tags to file Maildir flags

‘D’ if the message has the “draft” tag
‘F’ if the message has the “flagged” tag
‘P’ if the message has the “passed” tag
‘R’ if the message has the “replied” tag
‘S’ if the message does not have the “unread” tag

Any existing flags unmentioned in the list above will be
preserved in the renaming.

Also, if this filename is in a directory named “new”, rename it
to be within the neighboring directory named “cur”.

Do note that calling this method while a message is frozen might
not work yet, as the modified tags have not been committed yet
to the database.

	Returns

	a STATUS value. In short, you want to see
notmuch.STATUS.SUCCESS here. See there for details.

	
remove_tag(tag, sync_maildir_flags=False)

	Removes a tag from the given message

If the message has no such tag, this is a non-operation and
will report success anyway.

	Parameters

	
	tag – String with a ‘tag’ to be removed.

	sync_maildir_flags – If notmuch configuration is set to do
this, add maildir flags corresponding to notmuch tags. See
underlying method tags_to_maildir_flags(). Use False
if you want to add/remove many tags on a message without
having to physically rename the file every time. Do note,
that this will do nothing when a message is frozen, as tag
changes will not be committed to the database yet.

	Returns

	STATUS.SUCCESS if the tag was successfully removed or if
the message had no such tag.
Raises an exception otherwise.

	Raises

	NullPointerError if the tag argument is NULL

	Raises

	TagTooLongError if the length of tag exceeds
Message.NOTMUCH_TAG_MAX)

	Raises

	ReadOnlyDatabaseError if the database was opened
in read-only mode so message cannot be modified

	Raises

	NotInitializedError if message has not been
initialized

	
add_tag(tag, sync_maildir_flags=False)

	Adds a tag to the given message

Adds a tag to the current message. The maximal tag length is defined in
the notmuch library and is currently 200 bytes.

	Parameters

	
	tag – String with a ‘tag’ to be added.

	sync_maildir_flags – If notmuch configuration is set to do
this, add maildir flags corresponding to notmuch tags. See
underlying method tags_to_maildir_flags(). Use False
if you want to add/remove many tags on a message without
having to physically rename the file every time. Do note,
that this will do nothing when a message is frozen, as tag
changes will not be committed to the database yet.

	Returns

	STATUS.SUCCESS if the tag was successfully added.
Raises an exception otherwise.

	Raises

	NullPointerError if the tag argument is NULL

	Raises

	TagTooLongError if the length of tag exceeds
Message.NOTMUCH_TAG_MAX)

	Raises

	ReadOnlyDatabaseError if the database was opened
in read-only mode so message cannot be modified

	Raises

	NotInitializedError if message has not been
initialized

	
remove_all_tags(sync_maildir_flags=False)

	Removes all tags from the given message.

See freeze() for an example showing how to safely
replace tag values.

	Parameters

	sync_maildir_flags – If notmuch configuration is set to do
this, add maildir flags corresponding to notmuch tags. See
tags_to_maildir_flags(). Use False if you want to
add/remove many tags on a message without having to
physically rename the file every time. Do note, that this
will do nothing when a message is frozen, as tag changes
will not be committed to the database yet.

	Returns

	STATUS.SUCCESS if the tags were successfully removed.
Raises an exception otherwise.

	Raises

	ReadOnlyDatabaseError if the database was opened
in read-only mode so message cannot be modified

	Raises

	NotInitializedError if message has not been
initialized

	
freeze()

	Freezes the current state of ‘message’ within the database

This means that changes to the message state, (via add_tag(),
remove_tag(), and remove_all_tags()), will not be
committed to the database until the message is thaw() ed.

Multiple calls to freeze/thaw are valid and these calls will
“stack”. That is there must be as many calls to thaw as to freeze
before a message is actually thawed.

The ability to do freeze/thaw allows for safe transactions to
change tag values. For example, explicitly setting a message to
have a given set of tags might look like this:

msg.freeze()
msg.remove_all_tags(False)
for tag in new_tags:
 msg.add_tag(tag, False)
msg.thaw()
msg.tags_to_maildir_flags()

With freeze/thaw used like this, the message in the database is
guaranteed to have either the full set of original tag values, or
the full set of new tag values, but nothing in between.

Imagine the example above without freeze/thaw and the operation
somehow getting interrupted. This could result in the message being
left with no tags if the interruption happened after
remove_all_tags() but before add_tag().

	Returns

	STATUS.SUCCESS if the message was successfully frozen.
Raises an exception otherwise.

	Raises

	ReadOnlyDatabaseError if the database was opened
in read-only mode so message cannot be modified

	Raises

	NotInitializedError if message has not been
initialized

	
thaw()

	Thaws the current ‘message’

Thaw the current ‘message’, synchronizing any changes that may have
occurred while ‘message’ was frozen into the notmuch database.

See freeze() for an example of how to use this
function to safely provide tag changes.

Multiple calls to freeze/thaw are valid and these calls with
“stack”. That is there must be as many calls to thaw as to freeze
before a message is actually thawed.

	Returns

	STATUS.SUCCESS if the message was successfully frozen.
Raises an exception otherwise.

	Raises

	UnbalancedFreezeThawError if an attempt was made
to thaw an unfrozen message. That is, there have been
an unbalanced number of calls to freeze() and
thaw().

	Raises

	NotInitializedError if message has not been
initialized

	
__str__()

	Return str(self).

Tags – Notmuch tags

	
class Tags(tags_p, parent=None)

	Represents a list of notmuch tags

This object provides an iterator over a list of notmuch tags (which
are unicode instances).

Do note that the underlying library only provides a one-time
iterator (it cannot reset the iterator to the start). Thus iterating
over the function will “exhaust” the list of tags, and a subsequent
iteration attempt will raise a NotInitializedError.
Also note, that any function that uses iteration (nearly all) will
also exhaust the tags. So both:

for tag in tags: print tag

as well as:

number_of_tags = len(tags)

and even a simple:

#str() iterates over all tags to construct a space separated list
print(str(tags))

will “exhaust” the Tags. If you need to re-iterate over a list of
tags you will need to retrieve a new Tags object.

	Parameters

	
	tags_p (ctypes.c_void_p [https://docs.python.org/3/library/ctypes.html#ctypes.c_void_p]) – A pointer to an underlying notmuch_tags_t
structure. These are not publicly exposed, so a user
will almost never instantiate a Tags object
herself. They are usually handed back as a result,
e.g. in Database.get_all_tags(). tags_p must be
valid, we will raise an NullPointerError if it is
None.

	parent – The parent object (ie Database or
Message these tags are derived from, and saves a
reference to it, so we can automatically delete the db object
once all derived objects are dead.

	TODO

	Make the iterator optionally work more than once by
cache the tags in the Python object(?)

	
__len__()

	
Warning

__len__() was removed in version 0.6 as it exhausted the iterator and broke
list(Tags()). Use len(list(msgs))() instead if you need to know the number of
tags.

	
__str__()

	Return str(self).

Threads – Threads iterator

	
class Threads(threads_p, parent=None)

	Represents a list of notmuch threads

This object provides an iterator over a list of notmuch threads
(Technically, it provides a wrapper for the underlying
notmuch_threads_t structure). Do note that the underlying
library only provides a one-time iterator (it cannot reset the
iterator to the start). Thus iterating over the function will
“exhaust” the list of threads, and a subsequent iteration attempt
will raise a NotInitializedError. Also
note, that any function that uses iteration will also
exhaust the messages. So both:

for thread in threads: print thread

as well as:

list_of_threads = list(threads)

will “exhaust” the threads. If you need to re-iterate over a list of
messages you will need to retrieve a new Threads object.

Things are not as bad as it seems though, you can store and reuse
the single Thread objects as often as you want as long as you
keep the parent Threads object around. (Recall that due to
hierarchical memory allocation, all derived Threads objects will
be invalid when we delete the parent Threads() object, even if it
was already “exhausted”.) So this works:

db = Database()
threads = Query(db,'').search_threads() #get a Threads() object
threadlist = []
for thread in threads:
 threadlist.append(thread)

threads is "exhausted" now.
However it will be kept around until all retrieved Thread() objects are
also deleted. If you did e.g. an explicit del(threads) here, the
following lines would fail.

You can reiterate over *threadlist* however as often as you want.
It is simply a list with Thread objects.

print (threadlist[0].get_thread_id())
print (threadlist[1].get_thread_id())
print (threadlist[0].get_total_messages())

	Parameters

	
	threads_p (ctypes.c_void_p [https://docs.python.org/3/library/ctypes.html#ctypes.c_void_p]) – A pointer to an underlying notmuch_threads_t
structure. These are not publicly exposed, so a user
will almost never instantiate a Threads object
herself. They are usually handed back as a result,
e.g. in Query.search_threads(). threads_p must be
valid, we will raise an NullPointerError if it is
None.

	parent – The parent object
(ie Query) these tags are derived from. It saves
a reference to it, so we can automatically delete the db
object once all derived objects are dead.

	TODO

	Make the iterator work more than once and cache the tags in
the Python object.(?)

	
__len__()

	

Warning

__len__() was removed in version 0.22 as it exhausted the
iterator and broke list(Threads()). Use len(list(msgs))
instead.

	
__str__()

	Return str(self).

Thread – A single thread

	
class Thread(thread_p, parent=None)

	Represents a single message thread.

	Parameters

	
	thread_p – A pointer to an internal notmuch_thread_t
Structure. These are not publicly exposed, so a user
will almost never instantiate a Thread object
herself. They are usually handed back as a result,
e.g. when iterating through Threads. thread_p
must be valid, we will raise an NullPointerError
if it is None.

	parent – A ‘parent’ object is passed which this message is
derived from. We save a reference to it, so we can
automatically delete the parent object once all derived
objects are dead.

	
get_thread_id()

	Get the thread ID of ‘thread’

The returned string belongs to ‘thread’ and will only be valid
for as long as the thread is valid.

	Returns

	String with a message ID

	Raises

	NotInitializedError if the thread
is not initialized.

	
get_total_messages()

	Get the total number of messages in ‘thread’

	Returns

	The number of all messages in the database
belonging to this thread. Contrast with
get_matched_messages().

	Raises

	NotInitializedError if the thread
is not initialized.

	
get_toplevel_messages()

	
	Returns a Messages iterator for the top-level messages in

	‘thread’

This iterator will not necessarily iterate over all of the messages
in the thread. It will only iterate over the messages in the thread
which are not replies to other messages in the thread.

	Returns

	Messages

	Raises

	NotInitializedError if query is not initialized

	Raises

	NullPointerError if search_messages failed

	
get_matched_messages()

	Returns the number of messages in ‘thread’ that matched the query

	Returns

	The number of all messages belonging to this thread that
matched the Query`from which this thread was created.
Contrast with :meth:`get_total_messages.

	Raises

	NotInitializedError if the thread
is not initialized.

	
get_authors()

	Returns the authors of ‘thread’

The returned string is a comma-separated list of the names of the
authors of mail messages in the query results that belong to this
thread.

The returned string belongs to ‘thread’ and will only be valid for
as long as this Thread() is not deleted.

	
get_subject()

	Returns the Subject of ‘thread’

The returned string belongs to ‘thread’ and will only be valid for
as long as this Thread() is not deleted.

	
get_oldest_date()

	Returns time_t of the oldest message date

	Returns

	A time_t timestamp.

	Return type

	c_unit64

	Raises

	NotInitializedError if the message
is not initialized.

	
get_newest_date()

	Returns time_t of the newest message date

	Returns

	A time_t timestamp.

	Return type

	c_unit64

	Raises

	NotInitializedError if the message
is not initialized.

	
get_tags()

	Returns the message tags

In the Notmuch database, tags are stored on individual
messages, not on threads. So the tags returned here will be all
tags of the messages which matched the search and which belong to
this thread.

The Tags object is owned by the thread and as such, will only
be valid for as long as this Thread is valid (e.g. until the
query from which it derived is explicitly deleted).

	Returns

	A Tags iterator.

	Raises

	NotInitializedError if query is not initialized

	Raises

	NullPointerError if search_messages failed

	
__str__()

	Return str(self).

Files and directories

Filenames – An iterator over filenames

	
class Filenames(files_p, parent)

	Represents a list of filenames as returned by notmuch

Objects of this class implement the iterator protocol.

Note

The underlying library only provides a one-time iterator (it
cannot reset the iterator to the start). Thus iterating over
the function will “exhaust” the list of tags, and a subsequent
iteration attempt will raise a
NotInitializedError. Also note, that any function that
uses iteration (nearly all) will also exhaust the tags. So
both:

for name in filenames: print name

as well as:

list_of_names = list(names)

and even a simple:

#str() iterates over all tags to construct a space separated list
print(str(filenames))

will “exhaust” the Filenames. However, you can use
Message.get_filenames() repeatedly to get fresh
Filenames objects to perform various actions on filenames.

	Parameters

	
	files_p (ctypes.c_void_p [https://docs.python.org/3/library/ctypes.html#ctypes.c_void_p]) – A pointer to an underlying notmuch_tags_t
structure. These are not publicly exposed, so a user
will almost never instantiate a Tags object
herself. They are usually handed back as a result,
e.g. in Database.get_all_tags(). tags_p must be
valid, we will raise an NullPointerError
if it is None.

	parent – The parent object (ie Message these
filenames are derived from, and saves a
reference to it, so we can automatically delete the db object
once all derived objects are dead.

	
__len__()

	

Warning

__len__() was removed in version 0.22 as it exhausted the
iterator and broke list(Filenames()). Use len(list(names))
instead.

Directory – A directory entry in the database

	
class Directory(path, dir_p, parent)

	Represents a directory entry in the notmuch directory

Modifying attributes of this object will modify the
database, not the real directory attributes.

The Directory object is usually derived from another object
e.g. via Database.get_directory(), and will automatically be
become invalid whenever that parent is deleted. You should
therefore initialized this object handing it a reference to the
parent, preventing the parent from automatically being garbage
collected.

	Parameters

	
	path – The absolute path of the directory object.

	dir_p – The pointer to an internal notmuch_directory_t object.

	parent – The object this Directory is derived from
(usually a Database). We do not directly use
this, but store a reference to it as long as
this Directory object lives. This keeps the
parent object alive.

	
get_child_files()

	Gets a Filenames iterator listing all the filenames of
messages in the database within the given directory.

The returned filenames will be the basename-entries only (not
complete paths.

	
get_child_directories()

	Gets a Filenames iterator listing all the filenames of
sub-directories in the database within the given directory

The returned filenames will be the basename-entries only (not
complete paths.

	
get_mtime()

	Gets the mtime value of this directory in the database

Retrieves a previously stored mtime for this directory.

	Parameters

	mtime – A (time_t) timestamp

	Raises

	NotmuchError:

	STATUS.NOT_INITIALIZED

	The directory has not been initialized

	
set_mtime(mtime)

	Sets the mtime value of this directory in the database

The intention is for the caller to use the mtime to allow efficient
identification of new messages to be added to the database. The
recommended usage is as follows:

	Read the mtime of a directory from the filesystem

	Call Database.index_file() for all mail files in
the directory

	Call notmuch_directory_set_mtime with the mtime read from the
filesystem. Then, when wanting to check for updates to the
directory in the future, the client can call get_mtime()
and know that it only needs to add files if the mtime of the
directory and files are newer than the stored timestamp.

Note

get_mtime() function does not allow the caller to
distinguish a timestamp of 0 from a non-existent timestamp. So
don’t store a timestamp of 0 unless you are comfortable with
that.

	Parameters

	mtime – A (time_t) timestamp

	Raises

	XapianError a Xapian exception occurred, mtime
not stored

	Raises

	ReadOnlyDatabaseError the database was opened
in read-only mode so directory mtime cannot be modified

	Raises

	NotInitializedError the directory object has not
been initialized

	
mtime

	Property that allows getting
and setting of the Directory mtime (read-write)

See get_mtime() and set_mtime() for usage and
possible exceptions.

	
path

	Returns the absolute path of this Directory (read-only)

 Python Module Index

 n

 		 	

 		
 n	

 	
 	
 notmuch	

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | I
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | X

_

 	
 	__len__() (Filenames method)

 	(Messages method)

 	(Tags method)

 	(Threads method)

 	
 	__str__() (Message method)

 	(Tags method)

 	(Thread method)

 	(Threads method)

A

 	
 	add_tag() (Message method)

B

 	
 	begin_atomic() (Database method)

C

 	
 	close() (Database method)

 	collect_tags() (Messages method)

 	count_messages() (Query method)

 	
 	count_threads() (Query method)

 	create() (Database method)

 	(Query method)

 	create_query() (Database method)

D

 	
 	Database (class in notmuch)

 	
 	Directory (class in notmuch)

 	DuplicateMessageIdError

E

 	
 	end_atomic() (Database method)

 	
 	exclude_tag() (Query method)

F

 	
 	FileError

 	Filenames (class in notmuch)

 	FileNotEmailError

 	
 	find_message() (Database method)

 	find_message_by_filename() (Database method)

 	FLAG (Message attribute)

 	freeze() (Message method)

G

 	
 	get_all_tags() (Database method)

 	get_authors() (Thread method)

 	get_child_directories() (Directory method)

 	get_child_files() (Directory method)

 	get_config() (Database method)

 	get_configs() (Database method)

 	get_date() (Message method)

 	get_directory() (Database method)

 	get_filename() (Message method)

 	get_filenames() (Message method)

 	get_flag() (Message method)

 	get_header() (Message method)

 	get_matched_messages() (Thread method)

 	get_message_id() (Message method)

 	
 	get_mtime() (Directory method)

 	get_newest_date() (Thread method)

 	get_oldest_date() (Thread method)

 	get_path() (Database method)

 	get_properties() (Message method)

 	get_property() (Message method)

 	get_replies() (Message method)

 	get_subject() (Thread method)

 	get_tags() (Message method)

 	(Thread method)

 	get_thread_id() (Message method)

 	(Thread method)

 	get_toplevel_messages() (Thread method)

 	get_total_messages() (Thread method)

 	get_version() (Database method)

I

 	
 	index_file() (Database method)

M

 	
 	maildir_flags_to_tags() (Message method)

 	Message (class in notmuch)

 	
 	Messages (class in notmuch)

 	MODE (Database attribute)

 	mtime (Directory attribute)

N

 	
 	needs_upgrade() (Database method)

 	NotInitializedError

 	
 	notmuch (module)

 	NotmuchError

 	NullPointerError

O

 	
 	open() (Database method)

 	
 	OutOfMemoryError

P

 	
 	path (Directory attribute)

 	
 	PathError

Q

 	
 	Query (class in notmuch)

R

 	
 	ReadOnlyDatabaseError

 	remove_all_tags() (Message method)

 	
 	remove_message() (Database method)

 	remove_tag() (Message method)

S

 	
 	search_messages() (Query method)

 	search_threads() (Query method)

 	set_config() (Database method)

 	set_flag() (Message method)

 	set_mtime() (Directory method)

 	
 	set_sort() (Query method)

 	SORT (Query attribute)

 	sort (Query attribute)

 	STATUS (class in notmuch)

 	status2str() (notmuch.STATUS class method), [1]

T

 	
 	Tags (class in notmuch)

 	tags_to_maildir_flags() (Message method)

 	TagTooLongError

 	
 	thaw() (Message method)

 	Thread (class in notmuch)

 	Threads (class in notmuch)

U

 	
 	UnbalancedAtomicError

 	UnbalancedFreezeThawError

 	
 	UnsupportedOperationError

 	upgrade() (Database method)

 	UpgradeRequiredError

X

 	
 	XapianError

 _static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

_static/down-pressed.png

_static/down.png

nav.xhtml

 Table of Contents

 		
 Welcome to notmuch’s documentation

 		
 Quickstart and examples

 		
 Interfacing with notmuch

 		
 Status and Errors

 		
 STATUS – Notmuch operation return value

 		
 NotmuchError – A Notmuch execution error

 		
 Database – The underlying notmuch database

 		
 Query – A search query

 		
 Messages – A bunch of messages

 		
 Message – A single message

 		
 Tags – Notmuch tags

 		
 Threads – Threads iterator

 		
 Thread – A single thread

 		
 Files and directories

 		
 Filenames – An iterator over filenames

 		
 Directory – A directory entry in the database

_static/minus.png

_static/plus.png

_static/file.png

_static/up.png

_static/up-pressed.png

