
notmuch
Release 0.30

Jul 12, 2020

Contents

1 notmuch 3
1.1 SYNOPSIS . 3
1.2 DESCRIPTION . 3
1.3 NOTE . 3
1.4 OPTIONS . 3
1.5 COMMANDS . 4
1.6 ENVIRONMENT . 5
1.7 SEE ALSO . 5
1.8 CONTACT . 5

2 notmuch-address 7
2.1 SYNOPSIS . 7
2.2 DESCRIPTION . 7
2.3 EXIT STATUS . 8
2.4 SEE ALSO . 8

3 notmuch-compact 9
3.1 SYNOPSIS . 9
3.2 DESCRIPTION . 9
3.3 ENVIRONMENT . 9
3.4 SEE ALSO . 10

4 notmuch-config 11
4.1 SYNOPSIS . 11
4.2 DESCRIPTION . 11
4.3 ENVIRONMENT . 13
4.4 SEE ALSO . 13

5 notmuch-count 15
5.1 SYNOPSIS . 15
5.2 DESCRIPTION . 15
5.3 SEE ALSO . 16

6 notmuch-dump 17
6.1 SYNOPSIS . 17
6.2 DESCRIPTION . 17
6.3 SEE ALSO . 18

i

7 notmuch-emacs-mua 19
7.1 SYNOPSIS . 19
7.2 DESCRIPTION . 19
7.3 ENVIRONMENT VARIABLES . 20
7.4 SEE ALSO . 20

8 notmuch-hooks 21
8.1 SYNOPSIS . 21
8.2 DESCRIPTION . 21
8.3 SEE ALSO . 22

9 notmuch-insert 23
9.1 SYNOPSIS . 23
9.2 DESCRIPTION . 23
9.3 EXIT STATUS . 24
9.4 SEE ALSO . 24

10 notmuch-new 25
10.1 SYNOPSIS . 25
10.2 DESCRIPTION . 25
10.3 EXIT STATUS . 26
10.4 SEE ALSO . 26

11 notmuch-properties 27
11.1 SYNOPSIS . 27
11.2 DESCRIPTION . 27
11.3 CONVENTIONS . 28
11.4 MESSAGE PROPERTIES . 28
11.5 SEE ALSO . 29

12 notmuch-reindex 31
12.1 SYNOPSIS . 31
12.2 DESCRIPTION . 31
12.3 EXAMPLES . 32
12.4 SEE ALSO . 32

13 notmuch-reply 33
13.1 SYNOPSIS . 33
13.2 DESCRIPTION . 33
13.3 EXIT STATUS . 34
13.4 SEE ALSO . 34

14 notmuch-restore 35
14.1 SYNOPSIS . 35
14.2 DESCRIPTION . 35
14.3 GZIPPED INPUT . 36
14.4 SEE ALSO . 36

15 notmuch-search 37
15.1 SYNOPSIS . 37
15.2 DESCRIPTION . 37
15.3 EXAMPLE . 38
15.4 EXIT STATUS . 39
15.5 SEE ALSO . 39

ii

16 notmuch-search-terms 41
16.1 SYNOPSIS . 41
16.2 DESCRIPTION . 41
16.3 DATE AND TIME SEARCH . 45
16.4 SEE ALSO . 47

17 notmuch-show 49
17.1 SYNOPSIS . 49
17.2 DESCRIPTION . 49
17.3 EXIT STATUS . 51
17.4 SEE ALSO . 51

18 notmuch-tag 53
18.1 SYNOPSIS . 53
18.2 DESCRIPTION . 53
18.3 TAG FILE FORMAT . 54
18.4 SEE ALSO . 54

19 Indices and tables 55

iii

iv

notmuch, Release 0.30

Contents:

Contents 1

notmuch, Release 0.30

2 Contents

CHAPTER 1

notmuch

1.1 SYNOPSIS

notmuch [option . . .] command [arg . . .]

1.2 DESCRIPTION

Notmuch is a command-line based program for indexing, searching, reading, and tagging large collections of email
messages.

This page describes how to get started using notmuch from the command line, and gives a brief overview of the
commands available. For more information on e.g. notmuch show consult the notmuch-show(1) man page, also
accessible via notmuch help show

The quickest way to get started with Notmuch is to simply invoke the notmuch command with no arguments, which
will interactively guide you through the process of indexing your mail.

1.3 NOTE

While the command-line program notmuch provides powerful functionality, it does not provide the most convenient
interface for that functionality. More sophisticated interfaces are expected to be built on top of either the command-
line interface, or more likely, on top of the notmuch library interface. See https://notmuchmail.org for more about
alternate interfaces to notmuch. The emacs-based interface to notmuch (available under emacs/ in the Notmuch
source distribution) is probably the most widely used at this time.

1.4 OPTIONS

Supported global options for notmuch include

3

https://notmuchmail.org

notmuch, Release 0.30

--help [command-name] Print a synopsis of available commands and exit. With an optional command name,
show the man page for that subcommand.

--version Print the installed version of notmuch, and exit.

--config=FILE Specify the configuration file to use. This overrides any configuration file specified by ${NOT-
MUCH_CONFIG}.

--uuid=HEX Enforce that the database UUID (a unique identifier which persists until e.g. the database is com-
pacted) is HEX; exit with an error if it is not. This is useful to detect rollover in modification counts on messages.
You can find this UUID using e.g. notmuch count --lastmod

All global options except --config can also be specified after the command. For example, notmuch
subcommand --uuid=HEX is equivalent to notmuch --uuid=HEX subcommand.

1.5 COMMANDS

1.5.1 SETUP

The notmuch setup command is used to configure Notmuch for first use, (or to reconfigure it later).

The setup command will prompt for your full name, your primary email address, any alternate email addresses you
use, and the directory containing your email archives. Your answers will be written to a configuration file in ${NOT-
MUCH_CONFIG} (if set) or ${HOME}/.notmuch-config . This configuration file will be created with descriptive
comments, making it easy to edit by hand later to change the configuration. Or you can run notmuch setup again to
change the configuration.

The mail directory you specify can contain any number of sub-directories and should primarily contain only files with
individual email messages (eg. maildir or mh archives are perfect). If there are other, non-email files (such as indexes
maintained by other email programs) then notmuch will do its best to detect those and ignore them.

Mail storage that uses mbox format, (where one mbox file contains many messages), will not work with notmuch. If
that’s how your mail is currently stored, it is recommended you first convert it to maildir format with a utility such as
mb2md before running notmuch setup .

Invoking notmuch with no command argument will run setup if the setup command has not previously been com-
pleted.

1.5.2 OTHER COMMANDS

Several of the notmuch commands accept search terms with a common syntax. See notmuch-search-terms(7) for
more details on the supported syntax.

The search, show, address and count commands are used to query the email database.

The reply command is useful for preparing a template for an email reply.

The tag command is the only command available for manipulating database contents.

The dump and restore commands can be used to create a textual dump of email tags for backup purposes, and to
restore from that dump.

The config command can be used to get or set settings in the notmuch configuration file.

4 Chapter 1. notmuch

notmuch, Release 0.30

1.5.3 CUSTOM COMMANDS

If the given command is not known to notmuch, notmuch tries to execute the external notmuch-<subcommand> in
${PATH} instead. This allows users to have their own notmuch related tools to be run via the notmuch command. By
design, this does not allow notmuch’s own commands to be overridden using external commands.

1.5.4 OPTION SYNTAX

All options accepting an argument can be used with ‘=’ or ‘:’ as a separator. Except for boolean options (which would
be ambiguous), a space can also be used as a separator. The following are all equivalent:

notmuch --config=alt-config config get user.name
notmuch --config:alt-config config get user.name
notmuch --config alt-config config get user.name

1.6 ENVIRONMENT

The following environment variables can be used to control the behavior of notmuch.

NOTMUCH_CONFIG Specifies the location of the notmuch configuration file. Notmuch will use
${HOME}/.notmuch-config if this variable is not set.

NOTMUCH_TALLOC_REPORT Location to write a talloc memory usage report. See tal-
loc_enable_leak_report_full in talloc(3) for more information.

NOTMUCH_DEBUG_QUERY If set to a non-empty value, the notmuch library will print (to stderr) Xapian queries
it constructs.

1.7 SEE ALSO

notmuch-address(1), notmuch-compact(1), notmuch-config(1), notmuch-count(1), notmuch-dump(1),
notmuch-hooks(5), notmuch-insert(1), notmuch-new(1), notmuch-properties(7), notmuch-reindex(1),
notmuch-reply(1), notmuch-restore(1), notmuch-search(1), notmuch-search-terms(7), notmuch-show(1),
notmuch-tag(1)

The notmuch website: https://notmuchmail.org

1.8 CONTACT

Feel free to send questions, comments, or kudos to the notmuch mailing list <notmuch@notmuchmail.org> . Sub-
scription is not required before posting, but is available from the notmuchmail.org website.

Real-time interaction with the Notmuch community is available via IRC (server: irc.freenode.net, channel: #notmuch).

1.6. ENVIRONMENT 5

mailto:notmuch@notmuchmail.org

notmuch, Release 0.30

6 Chapter 1. notmuch

CHAPTER 2

notmuch-address

2.1 SYNOPSIS

notmuch address [option . . .] <search-term> . . .

2.2 DESCRIPTION

Search for messages matching the given search terms, and display the addresses from them. Duplicate addresses are
filtered out.

See notmuch-search-terms(7) for details of the supported syntax for <search-terms>.

Supported options for address include

--format=(json|sexp|text|text0) Presents the results in either JSON, S-Expressions, newline character separated
plain-text (default), or null character separated plain-text (compatible with xargs(1) -0 option where available).

--format-version=N Use the specified structured output format version. This is intended for programs that
invoke notmuch(1) internally. If omitted, the latest supported version will be used.

--output=(sender|recipients|count|address) Controls which information appears in the output.
This option can be given multiple times to combine different outputs. When neither --output=sender
nor --output=recipients is given, --output=sender is implied.

sender Output all addresses from the From header.

Note: Searching for sender should be much faster than searching for recipients, because sender addresses
are cached directly in the database whereas other addresses need to be fetched from message files.

recipients Output all addresses from the To, Cc and Bcc headers.

count Print the count of how many times was the address encountered during search.

Note: With this option, addresses are printed only after the whole search is finished. This may take long
time.

7

notmuch, Release 0.30

address Output only the email addresses instead of the full mailboxes with names and email addresses. This
option has no effect on the JSON or S-Expression output formats.

--deduplicate=(no|mailbox|address) Control the deduplication of results.

no Output all occurrences of addresses in the matching messages. This is not applicable with
--output=count.

mailbox Deduplicate addresses based on the full, case sensitive name and email address, or mailbox. This is
effectively the same as piping the --deduplicate=no output to sort | uniq, except for the order of
results. This is the default.

address Deduplicate addresses based on the case insensitive address part of the mailbox. Of all the variants
(with different name or case), print the one occurring most frequently among the matching messages. If
--output=count is specified, include all variants in the count.

--sort=(newest-first|oldest-first) This option can be used to present results in either chronological order (oldest-
first) or reverse chronological order (newest-first).

By default, results will be displayed in reverse chronological order, (that is, the newest results will be displayed
first).

However, if either --output=count or --deduplicate=address is specified, this option is ignored
and the order of the results is unspecified.

--exclude=(true|false) A message is called “excluded” if it matches at least one tag in search.exclude_tags
that does not appear explicitly in the search terms. This option specifies whether to omit excluded messages in
the search process.

The default value, true, prevents excluded messages from matching the search terms.

false allows excluded messages to match search terms and appear in displayed results.

2.3 EXIT STATUS

This command supports the following special exit status codes

20 The requested format version is too old.

21 The requested format version is too new.

2.4 SEE ALSO

notmuch(1), notmuch-config(1), notmuch-count(1), notmuch-dump(1), notmuch-hooks(5), notmuch-insert(1),
notmuch-new(1), notmuch-reply(1), notmuch-restore(1), notmuch-search-terms(7), notmuch-show(1),
notmuch-tag(1), notmuch-search(1)

8 Chapter 2. notmuch-address

CHAPTER 3

notmuch-compact

3.1 SYNOPSIS

notmuch compact [–quiet] [–backup=<directory>]

3.2 DESCRIPTION

The compact command can be used to compact the notmuch database. This can both reduce the space required by the
database and improve lookup performance.

The compacted database is built in a temporary directory and is later moved into the place of the origin database. The
original uncompacted database is discarded, unless the --backup=<directory> option is used.

Note that the database write lock will be held during the compaction process (which may be quite long) to protect data
integrity.

Supported options for compact include

--backup=<directory> Save the current database to the given directory before replacing it with the compacted
database. The backup directory must not exist and it must reside on the same mounted filesystem as the current
database.

--quiet Do not report database compaction progress to stdout.

3.3 ENVIRONMENT

The following environment variables can be used to control the behavior of notmuch.

NOTMUCH_CONFIG Specifies the location of the notmuch configuration file. Notmuch will use
${HOME}/.notmuch-config if this variable is not set.

9

notmuch, Release 0.30

3.4 SEE ALSO

notmuch(1), notmuch-count(1), notmuch-dump(1), notmuch-hooks(5), notmuch-insert(1), notmuch-new(1),
notmuch-reply(1), notmuch-restore(1), notmuch-search(1), notmuch-search-terms(7), notmuch-show(1),
notmuch-tag(1)

10 Chapter 3. notmuch-compact

CHAPTER 4

notmuch-config

4.1 SYNOPSIS

notmuch config get <section>.<item>

notmuch config set <section>.<item> [value . . .]

notmuch config list

4.2 DESCRIPTION

The config command can be used to get or set settings in the notmuch configuration file and corresponding database.

Items marked [STORED IN DATABASE] are only in the database. They should not be placed in the configuration
file, and should be accessed programmatically as described in the SYNOPSIS above.

get The value of the specified configuration item is printed to stdout. If the item has multiple values (it is a list), each
value is separated by a newline character.

set The specified configuration item is set to the given value. To specify a multiple-value item (a list), provide each
value as a separate command-line argument.

If no values are provided, the specified configuration item will be removed from the configuration file.

list Every configuration item is printed to stdout, each on a separate line of the form:

section.item=value

No additional whitespace surrounds the dot or equals sign characters. In a multiple-value item (a list), the values
are separated by semicolon characters.

The available configuration items are described below.

11

notmuch, Release 0.30

database.path The top-level directory where your mail currently exists and to where mail will be delivered in the
future. Files should be individual email messages. Notmuch will store its database within a sub-directory of the
path configured here named .notmuch.

Default: $MAILDIR variable if set, otherwise $HOME/mail.

user.name Your full name.

Default: $NAME variable if set, otherwise read from /etc/passwd.

user.primary_email Your primary email address.

Default: $EMAIL variable if set, otherwise constructed from the username and hostname of the current machine.

user.other_email A list of other email addresses at which you receive email.

Default: not set.

new.tags A list of tags that will be added to all messages incorporated by notmuch new.

Default: unread;inbox.

new.ignore A list to specify files and directories that will not be searched for messages by notmuch new. Each entry
in the list is either:

A file or a directory name, without path, that will be ignored, regardless of the location in the mail store directory
hierarchy.

Or:

A regular expression delimited with // that will be matched against the path of the file or directory relative to the
database path. Matching files and directories will be ignored. The beginning and end of string must be explicitly
anchored. For example, /.*/foo$/ would match “bar/foo” and “bar/baz/foo”, but not “foo” or “bar/foobar”.

Default: empty list.

search.exclude_tags A list of tags that will be excluded from search results by default. Using an excluded tag in a
query will override that exclusion.

Default: empty list. Note that notmuch-setup(1) puts deleted;spam here when creating new configuration
file.

maildir.synchronize_flags If true, then the following maildir flags (in message filenames) will be synchronized with
the corresponding notmuch tags:

Flag Tag
D draft
F flagged
P passed
R replied
S unread (added when ‘S’ flag is not present)

The notmuch new command will notice flag changes in filenames and update tags, while the notmuch tag and
notmuch restore commands will notice tag changes and update flags in filenames.

If there have been any changes in the maildir (new messages added, old ones removed or renamed, maildir
flags changed, etc.), it is advisable to run notmuch new before notmuch tag or notmuch restore commands to
ensure the tag changes are properly synchronized to the maildir flags, as the commands expect the database and
maildir to be in sync.

Default: true.

12 Chapter 4. notmuch-config

notmuch, Release 0.30

index.decrypt [STORED IN DATABASE] Policy for decrypting encrypted messages during indexing. Must be one
of: false, auto, nostash, or true.

When indexing an encrypted e-mail message, if this variable is set to true, notmuch will try to decrypt the
message and index the cleartext, stashing a copy of any discovered session keys for the message. If auto, it
will try to index the cleartext if a stashed session key is already known for the message (e.g. from a previous
copy), but will not try to access your secret keys. Use false to avoid decrypting even when a stashed session
key is already present.

nostash is the same as true except that it will not stash newly-discovered session keys in the database.

From the command line (i.e. during notmuch-new(1), notmuch-insert(1), or notmuch-reindex(1)), the user
can override the database’s stored decryption policy with the --decrypt= option.

Here is a table that summarizes the functionality of each of these policies:

false auto nostash true
Index cleartext using stashed session keys X X X
Index cleartext using secret keys X X
Stash session keys X
Delete stashed session keys on reindex X

Stashed session keys are kept in the database as properties associated with the message. See session-key in
notmuch-properties(7) for more details about how they can be useful.

Be aware that the notmuch index is likely sufficient (and a stashed session key is certainly sufficient) to re-
construct the cleartext of the message itself, so please ensure that the notmuch message index is adequately
protected. DO NOT USE index.decrypt=true or index.decrypt=nostash without considering
the security of your index.

Default: auto.

index.header.<prefix> [STORED IN DATABASE] Define the query prefix <prefix>, based on a mail header.
For example index.header.List=List-Id will add a probabilistic prefix List: that searches the
List-Id field. User defined prefixes must not start with ‘a’. . . ’z’; in particular adding a prefix with same
name as a predefined prefix is not supported. See notmuch-search-terms(7) for a list of existing prefixes, and
an explanation of probabilistic prefixes.

built_with.<name> Compile time feature <name>. Current possibilities include “retry_lock” (configure option, in-
cluded by default). (since notmuch 0.30, “compact” and “field_processor” are always included.)

query.<name> [STORED IN DATABASE] Expansion for named query called <name>. See notmuch-search-
terms(7) for more information about named queries.

4.3 ENVIRONMENT

The following environment variables can be used to control the behavior of notmuch.

NOTMUCH_CONFIG Specifies the location of the notmuch configuration file. Notmuch will use
${HOME}/.notmuch-config if this variable is not set.

4.4 SEE ALSO

notmuch(1), notmuch-count(1), notmuch-dump(1), notmuch-hooks(5), notmuch-insert(1), notmuch-new(1),
notmuch-reply(1), notmuch-restore(1), notmuch-search(1), notmuch-search-terms(7), notmuch-properties(7),

4.3. ENVIRONMENT 13

notmuch, Release 0.30

notmuch-show(1), notmuch-tag(1)

14 Chapter 4. notmuch-config

CHAPTER 5

notmuch-count

5.1 SYNOPSIS

notmuch count [option . . .] <search-term> . . .

5.2 DESCRIPTION

Count messages matching the search terms.

The number of matching messages (or threads) is output to stdout.

With no search terms, a count of all messages (or threads) in the database will be displayed.

See notmuch-search-terms(7) for details of the supported syntax for <search-terms>.

Supported options for count include

--output=(messages|threads|files)

messages Output the number of matching messages. This is the default.

threads Output the number of matching threads.

files Output the number of files associated with matching messages. This may be bigger than the number of
matching messages due to duplicates (i.e. multiple files having the same message-id).

--exclude=(true|false) Specify whether to omit messages matching search.exclude_tags from the count
(the default) or not.

--batch Read queries from a file (stdin by default), one per line, and output the number of matching messages (or
threads) to stdout, one per line. On an empty input line the count of all messages (or threads) in the database
will be output. This option is not compatible with specifying search terms on the command line.

--lastmod Append lastmod (counter for number of database updates) and UUID to the output. lastmod values are
only comparable between databases with the same UUID.

--input=<filename> Read input from given file, instead of from stdin. Implies --batch.

15

notmuch, Release 0.30

5.3 SEE ALSO

notmuch(1), notmuch-config(1), notmuch-dump(1), notmuch-hooks(5), notmuch-insert(1), notmuch-new(1),
notmuch-reply(1), notmuch-restore(1), notmuch-search(1), notmuch-search-terms(7), notmuch-show(1),
notmuch-tag(1)

16 Chapter 5. notmuch-count

CHAPTER 6

notmuch-dump

6.1 SYNOPSIS

notmuch dump [–gzip] [–format=(batch-tag|sup)] [–output=<file>] [–] [<search-term> . . .]

6.2 DESCRIPTION

Dump tags for messages matching the given search terms.

Output is to the given filename, if any, or to stdout.

These tags are the only data in the notmuch database that can’t be recreated from the messages themselves. The output
of notmuch dump is therefore the only critical thing to backup (and much more friendly to incremental backup than
the native database files.)

See notmuch-search-terms(7) for details of the supported syntax for <search-terms>. With no search terms, a dump
of all messages in the database will be generated. A -- argument instructs notmuch that the remaining arguments are
search terms.

Supported options for dump include

--gzip Compress the output in a format compatible with gzip(1).

--format=(sup|batch-tag) Notmuch restore supports two plain text dump formats, both with one message-id
per line, followed by a list of tags.

batch-tag The default batch-tag dump format is intended to more robust against malformed message-ids and
tags containing whitespace or non-ascii(7) characters. Each line has the form:

+<*encoded-tag*\ > +<*encoded-tag*\ > ... -- id:<*quoted-message-id*\ >

Tags are hex-encoded by replacing every byte not matching the regex [A-Za-z0-9@=.,_+-] with %nn
where nn is the two digit hex encoding. The message ID is a valid Xapian query, quoted using Xapian
boolean term quoting rules: if the ID contains whitespace or a close paren or starts with a double quote, it

17

notmuch, Release 0.30

must be enclosed in double quotes and double quotes inside the ID must be doubled. The astute reader will
notice this is a special case of the batch input format for notmuch-tag(1); note that the single message-id
query is mandatory for notmuch-restore(1).

sup The sup dump file format is specifically chosen to be compatible with the format of files produced by sup-
dump. So if you’ve previously been using sup for mail, then the notmuch restore command provides you
a way to import all of your tags (or labels as sup calls them). Each line has the following form:

<*message-id*\ > **(** <*tag*\ > ... **)**

with zero or more tags are separated by spaces. Note that (malformed) message-ids may contain arbitrary
non-null characters. Note also that tags with spaces will not be correctly restored with this format.

--include=(config|properties|tags) Control what kind of metadata is included in the output.

config Output configuration data stored in the database. Each line starts with “#@ “, followed by a space
separated key-value pair. Both key and value are hex encoded if needed.

properties Output per-message (key,value) metadata. Each line starts with “#= “, followed by a message id, and
a space separated list of key=value pairs. Ids, keys and values are hex encoded if needed. See notmuch-
properties(7) for more details.

tags Output per-message boolean metadata, namely tags. See format above for description of the output.

The default is to include all available types of data. The option can be specified multiple times to select some
subset. As of version 3 of the dump format, there is a header line of the following form:

#notmuch-dump <*format*>:<*version*> <*included*>

where <included> is a comma separated list of the above options.

--output=<filename> Write output to given file instead of stdout.

6.3 SEE ALSO

notmuch(1), notmuch-config(1), notmuch-count(1), notmuch-hooks(5), notmuch-insert(1), notmuch-new(1),
notmuch-properties(7), notmuch-reply(1), notmuch-restore(1), notmuch-search(1), notmuch-search-terms(7),
notmuch-show(1), notmuch-tag(1)

18 Chapter 6. notmuch-dump

CHAPTER 7

notmuch-emacs-mua

7.1 SYNOPSIS

notmuch emacs-mua [options . . .] [<to-address> . . . | <mailto-url>]

7.2 DESCRIPTION

Start composing an email in the Notmuch Emacs UI with the specified subject, recipients, and message body, or mailto:
URL.

Supported options for emacs-mua include

-h, --help Display help.

-s, --subject=<subject> Specify the subject of the message.

--to=<to-address> Specify a recipient (To).

-c, --cc=<cc-address> Specify a carbon-copy (Cc) recipient.

-b, --bcc=<bcc-address> Specify a blind-carbon-copy (Bcc) recipient.

-i, --body=<file> Specify a file to include into the body of the message.

--hello Go to the Notmuch hello screen instead of the message composition window if no message composition
parameters are given.

--no-window-system Even if a window system is available, use the current terminal.

--client Use emacsclient, rather than emacs. For emacsclient to work, you need an already running Emacs with
a server, or use --auto-daemon.

--auto-daemon Automatically start Emacs in daemon mode, if the Emacs server is not running. Applicable with
--client. Implies --create-frame.

19

notmuch, Release 0.30

--create-frame Create a new frame instead of trying to use the current Emacs frame. Applicable with
--client. This will be required when Emacs is running (or automatically started with --auto-daemon)
in daemon mode.

--print Output the resulting elisp to stdout instead of evaluating it.

The supported positional parameters and short options are a compatible subset of the mutt MUA command-line
options. The options and positional parameters modifying the message can’t be combined with the mailto: URL.

Options may be specified multiple times.

7.3 ENVIRONMENT VARIABLES

EMACS Name of emacs command to invoke. Defaults to “emacs”.

EMACSCLIENT Name of emacsclient command to invoke. Defaults to “emacsclient”.

7.4 SEE ALSO

notmuch(1), emacsclient(1), mutt(1)

20 Chapter 7. notmuch-emacs-mua

CHAPTER 8

notmuch-hooks

8.1 SYNOPSIS

$DATABASEDIR/.notmuch/hooks/*

8.2 DESCRIPTION

Hooks are scripts (or arbitrary executables or symlinks to such) that notmuch invokes before and after certain ac-
tions. These scripts reside in the .notmuch/hooks directory within the database directory and must have executable
permissions.

The currently available hooks are described below.

pre-new This hook is invoked by the new command before scanning or importing new messages into the database. If
this hook exits with a non-zero status, notmuch will abort further processing of the new command.

Typically this hook is used for fetching or delivering new mail to be imported into the database.

post-new This hook is invoked by the new command after new messages have been imported into the database and
initial tags have been applied. The hook will not be run if there have been any errors during the scan or import.

Typically this hook is used to perform additional query-based tagging on the imported messages.

post-insert This hook is invoked by the insert command after the message has been delivered, added to the database,
and initial tags have been applied. The hook will not be run if there have been any errors during the message
delivery; what is regarded as successful delivery depends on the --keep option.

Typically this hook is used to perform additional query-based tagging on the delivered messages.

21

notmuch, Release 0.30

8.3 SEE ALSO

notmuch(1), notmuch-config(1), notmuch-count(1), notmuch-dump(1), notmuch-insert(1), notmuch-new(1),
notmuch-reply(1), notmuch-restore(1), notmuch-search(1), notmuch-search-terms(7), notmuch-show(1),
notmuch-tag(1)

22 Chapter 8. notmuch-hooks

CHAPTER 9

notmuch-insert

9.1 SYNOPSIS

notmuch insert [option . . .] [+<tag>|-<tag> . . .]

9.2 DESCRIPTION

notmuch insert reads a message from standard input and delivers it into the maildir directory given by configuration
option database.path, then incorporates the message into the notmuch database. It is an alternative to using a separate
tool to deliver the message then running notmuch new afterwards.

The new message will be tagged with the tags specified by the new.tags configuration option, then by operations
specified on the command-line: tags prefixed by ‘+’ are added while those prefixed by ‘-‘ are removed.

If the new message is a duplicate of an existing message in the database (it has same Message-ID), it will be added to
the maildir folder and notmuch database, but the tags will not be changed.

The insert command supports hooks. See notmuch-hooks(5) for more details on hooks.

Option arguments must appear before any tag operation arguments. Supported options for insert include

--folder=<folder> Deliver the message to the specified folder, relative to the top-level directory given by the
value of database.path. The default is the empty string, which means delivering to the top-level directory.

--create-folder Try to create the folder named by the --folder option, if it does not exist. Otherwise the
folder must already exist for mail delivery to succeed.

--keep Keep the message file if indexing fails, and keep the message indexed if applying tags or maildir flag
synchronization fails. Ignore these errors and return exit status 0 to indicate successful mail delivery.

--no-hooks Prevent hooks from being run.

--world-readable When writing mail to the mailbox, allow it to be read by users other than the current user.
Note that this does not override umask. By default, delivered mail is only readable by the current user.

23

notmuch, Release 0.30

--decrypt=(true|nostash|auto|false) If true and the message is encrypted, try to decrypt the mes-
sage while indexing, stashing any session keys discovered. If auto, and notmuch already knows about a session
key for the message, it will try decrypting using that session key but will not try to access the user’s secret keys.
If decryption is successful, index the cleartext itself. Either way, the message is always stored to disk in its
original form (ciphertext).

nostash is the same as true except that it will not stash newly-discovered session keys in the database.

Be aware that the index is likely sufficient (and a stashed session key is certainly sufficient) to reconstruct the
cleartext of the message itself, so please ensure that the notmuch message index is adequately protected. DO
NOT USE --decrypt=true or --decrypt=nostash without considering the security of your index.

See also index.decrypt in notmuch-config(1).

9.3 EXIT STATUS

This command returns exit status 0 on successful mail delivery, non-zero otherwise. The default is to indicate failed
mail delivery on any errors, including message file delivery to the filesystem, message indexing to Notmuch database,
changing tags, and synchronizing tags to maildir flags. The --keep option may be used to settle for successful
message file delivery.

This command supports the following special exit status code for errors most likely to be temporary in nature, e.g.
failure to get a database write lock.

75 (EX_TEMPFAIL) A temporary failure occurred; the user is invited to retry.

The exit status of the post-insert hook does not affect the exit status of the insert command.

9.4 SEE ALSO

notmuch(1), notmuch-config(1), notmuch-count(1), notmuch-dump(1), notmuch-hooks(5), notmuch-reply(1),
notmuch-restore(1), notmuch-search(1), notmuch-search-terms(7), notmuch-show(1), notmuch-tag(1)

24 Chapter 9. notmuch-insert

CHAPTER 10

notmuch-new

10.1 SYNOPSIS

notmuch new [options]

10.2 DESCRIPTION

Find and import any new messages to the database.

The new command scans all sub-directories of the database, performing full-text indexing on new messages that are
found. Each new message will automatically be tagged with both the inbox and unread tags.

You should run notmuch new once after first running notmuch setup to create the initial database. The first run may
take a long time if you have a significant amount of mail (several hundred thousand messages or more). Subsequently,
you should run notmuch new whenever new mail is delivered and you wish to incorporate it into the database. These
subsequent runs will be much quicker than the initial run.

Invoking notmuch with no command argument will run new if notmuch setup has previously been completed, but
notmuch new has not previously been run.

notmuch new updates tags according to maildir flag changes if the maildir.synchronize_flags configuration option is
enabled. See notmuch-config(1) for details.

The new command supports hooks. See notmuch-hooks(5) for more details on hooks.

Supported options for new include

--no-hooks Prevents hooks from being run.

--quiet Do not print progress or results.

--verbose Print file names being processed. Ignored when combined with --quiet.

--decrypt=(true|nostash|auto|false) If true, when encountering an encrypted message, try to de-
crypt it while indexing, and stash any discovered session keys. If auto, try to use any session key already

25

notmuch, Release 0.30

known to belong to this message, but do not attempt to use the user’s secret keys. If decryption is successful,
index the cleartext of the message.

Be aware that the index is likely sufficient (and the session key is certainly sufficient) to reconstruct the cleartext
of the message itself, so please ensure that the notmuch message index is adequately protected. DO NOT USE
--decrypt=true or --decrypt=nostash without considering the security of your index.

See also index.decrypt in notmuch-config(1).

--full-scan By default notmuch-new uses directory modification times (mtimes) to optimize the scanning of
directories for new mail. This option turns that optimization off.

10.3 EXIT STATUS

This command supports the following special exit status code

75 (EX_TEMPFAIL) A temporary failure occurred; the user is invited to retry.

10.4 SEE ALSO

notmuch(1), notmuch-config(1), notmuch-count(1), notmuch-dump(1), notmuch-hooks(5), notmuch-insert(1),
notmuch-reply(1), notmuch-restore(1), notmuch-search(1), notmuch-search-terms(7), notmuch-show(1),
notmuch-tag(1)

26 Chapter 10. notmuch-new

CHAPTER 11

notmuch-properties

11.1 SYNOPSIS

notmuch count property:<key>=<value>

notmuch search property:<key>=<value>

notmuch show property:<key>=<value>

notmuch reindex property:<key>=<value>

notmuch tag +<tag> property:<key>=<value>

notmuch dump –include=properties

notmuch restore –include=properties

11.2 DESCRIPTION

Several notmuch commands can search for, modify, add or remove properties associated with specific messages.
Properties are key/value pairs, and a message can have more than one key/value pair for the same key.

While users can select based on a specific property in their search terms with the prefix property:, the notmuch
command-line interface does not provide mechanisms for modifying properties directly to the user.

Instead, message properties are expected to be set and used programmatically, according to logic in notmuch itself, or
in extensions to it.

Extensions to notmuch which make use of properties are encouraged to report the specific properties used to the
upstream notmuch project, as a way of avoiding collisions in the property namespace.

27

notmuch, Release 0.30

11.3 CONVENTIONS

Any property with a key that starts with “index.” will be removed (and possibly re-set) upon reindexing (see notmuch-
reindex(1)).

11.4 MESSAGE PROPERTIES

The following properties are set by notmuch internally in the course of its normal activity.

index.decryption If a message contains encrypted content, and notmuch tries to decrypt that content during indexing,
it will add the property index.decryption=success when the cleartext was successfully indexed. If
notmuch attempts to decrypt any part of a message during indexing and that decryption attempt fails, it will add
the property index.decryption=failure to the message.

Note that it’s possible for a single message to have both index.decryption=success and index.
decryption=failure. Consider an encrypted e-mail message that contains another encrypted e-mail mes-
sage as an attachment – if the outer message can be decrypted, but the attached part cannot, then both properties
will be set on the message as a whole.

If notmuch never tried to decrypt an encrypted message during indexing (which is the default, see index.
decrypt in notmuch-config(1)), then this property will not be set on that message.

session-key

When notmuch-show(1) or nomtuch-reply encounters a message with an encrypted part, if notmuch
finds a session-key property associated with the message, it will try that stashed session key for
decryption.

If you do not want to use any stashed session keys that might be present, you should pass those programs
--decrypt=false.

Using a stashed session key with “notmuch show” will speed up rendering of long encrypted threads.
It also allows the user to destroy the secret part of any expired encryption-capable subkey while still
being able to read any retained messages for which they have stashed the session key. This enables truly
deletable e-mail, since (once the session key and asymmetric subkey are both destroyed) there are no keys
left that can be used to decrypt any copy of the original message previously stored by an adversary.

However, access to the stashed session key for an encrypted message permits full byte-for-byte reconstruc-
tion of the cleartext message. This includes attachments, cryptographic signatures, and other material that
cannot be reconstructed from the index alone.

See index.decrypt in notmuch-config(1) for more details about how to set notmuch’s policy on
when to store session keys.

The session key should be in the ASCII text form produced by GnuPG. For OpenPGP, that con-
sists of a decimal representation of the hash algorithm used (identified by number from RFC 4880,
e.g. 9 means AES-256) followed by a colon, followed by a hexadecimal representation of the
algorithm-specific key. For example, an AES-128 key might be stashed in a notmuch property as:
session-key=7:14B16AF65536C28AF209828DFE34C9E0.

index.repaired

Some messages arrive in forms that are confusing to view; they can be mangled by mail transport agents,
or the sending mail user agent may structure them in a way that is confusing. If notmuch knows how to
both detect and repair such a problematic message, it will do so during indexing.

If it applies a message repair during indexing, it will use the index.repaired property to note the
type of repair(s) it performed.

28 Chapter 11. notmuch-properties

notmuch, Release 0.30

index.repaired=skip-protected-headers-legacy-display indicates that when index-
ing the cleartext of an encrypted message, notmuch skipped over a “legacy-display” text/rfc822-headers
part that it found in that message, since it was able to index the built-in protected headers directly.

index.repaired=mixedup indicates the repair of a “Mixed Up” encrypted PGP/MIME mes-
sage, a mangling typically produced by Microsoft’s Exchange MTA. See https://tools.ietf.org/html/
draft-dkg-openpgp-pgpmime-message-mangling for more information.

11.5 SEE ALSO

notmuch(1), notmuch-config(1), notmuch-dump(1), notmuch-insert(1), notmuch-new(1), notmuch-reindex(1),
notmuch-reply(1), notmuch-restore(1), notmuch-show(1), *notmuch-search-terms(7)

11.5. SEE ALSO 29

https://tools.ietf.org/html/draft-dkg-openpgp-pgpmime-message-mangling
https://tools.ietf.org/html/draft-dkg-openpgp-pgpmime-message-mangling

notmuch, Release 0.30

30 Chapter 11. notmuch-properties

CHAPTER 12

notmuch-reindex

12.1 SYNOPSIS

notmuch reindex [option . . .] <search-term> . . .

12.2 DESCRIPTION

Re-index all messages matching the search terms.

See notmuch-search-terms(7) for details of the supported syntax for <search-term>.

The reindex command searches for all messages matching the supplied search terms, and re-creates the full-text index
on these messages using the supplied options.

Supported options for reindex include

--decrypt=(true|nostash|auto|false) If true, when encountering an encrypted message, try to de-
crypt it while reindexing, stashing any session keys discovered. If auto, and notmuch already knows about a
session key for the message, it will try decrypting using that session key but will not try to access the user’s
secret keys. If decryption is successful, index the cleartext itself.

nostash is the same as true except that it will not stash newly-discovered session keys in the database.

If false, notmuch reindex will also delete any stashed session keys for all messages matching the search terms.

Be aware that the index is likely sufficient (and a stashed session key is certainly sufficient) to reconstruct the
cleartext of the message itself, so please ensure that the notmuch message index is adequately protected. DO
NOT USE --decrypt=true or --decrypt=nostash without considering the security of your index.

See also index.decrypt in notmuch-config(1).

31

notmuch, Release 0.30

12.3 EXAMPLES

A user just received an encrypted message without indexing its cleartext. After reading it (via notmuch show
--decrypt=true), they decide that they want to index its cleartext so that they can easily find it later and read it
without having to have access to their secret keys:

notmuch reindex --decrypt=true id:1234567@example.com

A user wants to change their policy going forward to start indexing cleartext. But they also want indexed access to the
cleartext of all previously-received encrypted messages. Some messages might have already been indexed in the clear
(as in the example above). They can ask notmuch to just reindex the not-yet-indexed messages:

notmuch config set index.decrypt true
notmuch reindex tag:encrypted and not property:index.decryption=success

Later, the user changes their mind, and wants to stop indexing cleartext (perhaps their threat model has changed, or
their trust in their index store has been shaken). They also want to clear all of their old cleartext from the index. Note
that they compact the database afterward as a workaround for https://trac.xapian.org/ticket/742:

notmuch config set index.decrypt false
notmuch reindex property:index.decryption=success
notmuch compact

12.4 SEE ALSO

notmuch(1), notmuch-compact(1), notmuch-config(1), notmuch-count(1), notmuch-dump(1), notmuch-
hooks(5), notmuch-insert(1), notmuch-new(1), notmuch-reply(1), notmuch-restore(1), notmuch-search(1),
notmuch-search-terms(7), notmuch-show(1), notmuch-tag(1)

32 Chapter 12. notmuch-reindex

https://trac.xapian.org/ticket/742

CHAPTER 13

notmuch-reply

13.1 SYNOPSIS

notmuch reply [option . . .] <search-term> . . .

13.2 DESCRIPTION

Constructs a reply template for a set of messages.

To make replying to email easier, notmuch reply takes an existing set of messages and constructs a suitable mail
template. Its To: address is set according to the original email in this way: if the Reply-to: header is present and
different from any To:/Cc: address it is used, otherwise From: header is used. Unless --reply-to=sender is
specified, values from the To: and Cc: headers are copied, but not including any of the current user’s email addresses
(as configured in primary_mail or other_email in the .notmuch-config file) in the recipient list.

It also builds a suitable new subject, including Re: at the front (if not already present), and adding the message IDs of
the messages being replied to to the References list and setting the In-Reply-To: field correctly.

Finally, the original contents of the emails are quoted by prefixing each line with ‘> ‘ and included in the body.

The resulting message template is output to stdout.

Supported options for reply include

--format=(default|json|sexp|headers-only)

default Includes subject and quoted message body as an RFC 2822 message.

json Produces JSON output containing headers for a reply message and the contents of the original message.
This output can be used by a client to create a reply message intelligently.

sexp Produces S-Expression output containing headers for a reply message and the contents of the original
message. This output can be used by a client to create a reply message intelligently.

headers-only Only produces In-Reply-To, References, To, Cc, and Bcc headers.

33

notmuch, Release 0.30

--format-version=N Use the specified structured output format version. This is intended for programs that
invoke notmuch(1) internally. If omitted, the latest supported version will be used.

--reply-to=(all|sender)

all (default) Replies to all addresses.

sender Replies only to the sender. If replying to user’s own message (Reply-to: or From: header is one of the
user’s configured email addresses), try To:, Cc:, and Bcc: headers in this order, and copy values from the
first that contains something other than only the user’s addresses.

--decrypt=(false|auto|true)

If true, decrypt any MIME encrypted parts found in the selected content (i.e., “multipart/encrypted”
parts). Status of the decryption will be reported (currently only supported with --format=json and
--format=sexp), and on successful decryption the multipart/encrypted part will be replaced by the
decrypted content.

If auto, and a session key is already known for the message, then it will be decrypted, but notmuch will
not try to access the user’s secret keys.

Use false to avoid even automatic decryption.

Non-automatic decryption expects a functioning gpg-agent(1) to provide any needed credentials. Without
one, the decryption will likely fail.

Default: auto

See notmuch-search-terms(7) for details of the supported syntax for <search-terms>.

Note: It is most common to use notmuch reply with a search string matching a single message, (such as id:<message-
id>), but it can be useful to reply to several messages at once. For example, when a series of patches are sent in a
single thread, replying to the entire thread allows for the reply to comment on issues found in multiple patches. The
default format supports replying to multiple messages at once, but the JSON and S-Expression formats do not.

13.3 EXIT STATUS

This command supports the following special exit status codes

20 The requested format version is too old.

21 The requested format version is too new.

13.4 SEE ALSO

notmuch(1), notmuch-config(1), notmuch-count(1), notmuch-dump(1), notmuch-hooks(5), notmuch-insert(1),
notmuch-new(1), notmuch-restore(1), notmuch-search(1), notmuch-search-terms(7), notmuch-show(1),
notmuch-tag(1)

34 Chapter 13. notmuch-reply

CHAPTER 14

notmuch-restore

14.1 SYNOPSIS

notmuch restore [–accumulate] [–format=(auto|batch-tag|sup)] [–input=<filename>]

14.2 DESCRIPTION

Restores the tags from the given file (see notmuch dump).

The input is read from the given filename, if any, or from stdin.

Supported options for restore include

--accumulate The union of the existing and new tags is applied, instead of replacing each message’s tags as they
are read in from the dump file.

--format=(sup|batch-tag|auto) Notmuch restore supports two plain text dump formats, with each line
specifying a message-id and a set of tags. For details of the actual formats, see notmuch-dump(1).

sup The sup dump file format is specifically chosen to be compatible with the format of files produced by sup-
dump. So if you’ve previously been using sup for mail, then the notmuch restore command provides you
a way to import all of your tags (or labels as sup calls them).

batch-tag The batch-tag dump format is intended to more robust against malformed message-ids and tags
containing whitespace or non-ascii(7) characters. See notmuch-dump(1) for details on this format.

notmuch restore updates the maildir flags according to tag changes if the maildir.synchronize_flags
configuration option is enabled. See notmuch-config(1) for details.

auto This option (the default) tries to guess the format from the input. For correctly formed input in either
supported format, this heuristic, based the fact that batch-tag format contains no parentheses, should be
accurate.

--include=(config|properties|tags) Control what kind of metadata is restored.

35

notmuch, Release 0.30

config Restore configuration data to the database. Each configuration line starts with “#@ “, followed by a
space separated key-value pair. Both key and value are hex encoded if needed.

properties Restore per-message (key,value) metadata. Each line starts with “#= “, followed by a message
id, and a space separated list of key=value pairs. Ids, keys and values are hex encoded if needed. See
notmuch-properties(7) for more details.

tags Restore per-message metadata, namely tags. See format above for more details.

The default is to restore all available types of data. The option can be specified multiple times to select some
subset.

--input=<filename> Read input from given file instead of stdin.

14.3 GZIPPED INPUT

notmuch restore will detect if the input is compressed in gzip(1) format and automatically decompress it while
reading. This detection does not depend on file naming and in particular works for standard input.

14.4 SEE ALSO

notmuch(1), notmuch-config(1), notmuch-count(1), notmuch-dump(1), notmuch-hooks(5), notmuch-insert(1),
notmuch-new(1), notmuch-properties(7), notmuch-reply(1), notmuch-search(1), notmuch-search-terms(7),
notmuch-show(1), notmuch-tag(1)

36 Chapter 14. notmuch-restore

CHAPTER 15

notmuch-search

15.1 SYNOPSIS

notmuch search [option . . .] <search-term> . . .

15.2 DESCRIPTION

Search for messages matching the given search terms, and display as results the threads containing the matched
messages.

The output consists of one line per thread, giving a thread ID, the date of the newest (or oldest, depending on the sort
option) matched message in the thread, the number of matched messages and total messages in the thread, the names
of all participants in the thread, and the subject of the newest (or oldest) message.

See notmuch-search-terms(7) for details of the supported syntax for <search-terms>.

Supported options for search include

--format=(json|sexp|text|text0) Presents the results in either JSON, S-Expressions, newline character separated
plain-text (default), or null character separated plain-text (compatible with xargs(1) -0 option where available).

--format-version=N Use the specified structured output format version. This is intended for programs that
invoke notmuch(1) internally. If omitted, the latest supported version will be used.

--output=(summary|threads|messages|files|tags)

summary Output a summary of each thread with any message matching the search terms. The summary in-
cludes the thread ID, date, the number of messages in the thread (both the number matched and the total
number), the authors of the thread and the subject. In the case where a thread contains multiple files for
some messages, the total number of files is printed in parentheses (see below for an example).

threads Output the thread IDs of all threads with any message matching the search terms, either one
per line (--format=text), separated by null characters (--format=text0), as a JSON array
(--format=json), or an S-Expression list (--format=sexp).

37

notmuch, Release 0.30

messages Output the message IDs of all messages matching the search terms, either one per
line (--format=text), separated by null characters (--format=text0), as a JSON array
(--format=json), or as an S-Expression list (--format=sexp).

files Output the filenames of all messages matching the search terms, either one per line (--format=text),
separated by null characters (--format=text0), as a JSON array (--format=json), or as an S-
Expression list (--format=sexp).

Note that each message may have multiple filenames associated with it. All of them are included in the
output (unless limited with the --duplicate=N option). This may be particularly confusing for folder:
or path: searches in a specified directory, as the messages may have duplicates in other directories that are
included in the output, although these files alone would not match the search.

tags Output all tags that appear on any message matching the search terms, either one per
line (--format=text), separated by null characters (--format=text0), as a JSON array
(--format=json), or as an S-Expression list (--format=sexp).

--sort=(newest-first|oldest-first) This option can be used to present results in either chronological order (oldest-
first) or reverse chronological order (newest-first).

Note: The thread order will be distinct between these two options (beyond being simply reversed). When sorting
by oldest-first the threads will be sorted by the oldest message in each thread, but when sorting by newest-first
the threads will be sorted by the newest message in each thread.

By default, results will be displayed in reverse chronological order, (that is, the newest results will be displayed
first).

--offset=[-]N Skip displaying the first N results. With the leading ‘-‘, start at the Nth result from the end.

--limit=N Limit the number of displayed results to N.

--exclude=(true|false|all|flag) A message is called “excluded” if it matches at least one tag in
search.exclude_tags that does not appear explicitly in the search terms. This option specifies whether to omit
excluded messages in the search process.

true (default) Prevent excluded messages from matching the search terms.

all Additionally prevent excluded messages from appearing in displayed results, in effect behaving as though
the excluded messages do not exist.

false Allow excluded messages to match search terms and appear in displayed results. Excluded messages are
still marked in the relevant outputs.

flag Only has an effect when --output=summary. The output is almost identical to false, but the “match
count” is the number of matching non-excluded messages in the thread, rather than the number of matching
messages.

--duplicate=N For --output=files, output the Nth filename associated with each message matching the
query (N is 1-based). If N is greater than the number of files associated with the message, don’t print anything.

For --output=messages, only output message IDs of messages matching the search terms that have at least
N filenames associated with them.

Note that this option is orthogonal with the folder: search prefix. The prefix matches messages based on
filenames. This option filters filenames of the matching messages.

15.3 EXAMPLE

The following shows an example of the summary output format, with one message having multiple filenames.

38 Chapter 15. notmuch-search

notmuch, Release 0.30

% notmuch search date:today.. and tag:bad-news
thread:0000000000063c10 Today [1/1] Some Persun; To the bone (bad-news inbox unread)
thread:0000000000063c25 Today [1/1(2)] Ann Other; Bears (bad-news inbox unread)
thread:0000000000063c00 Today [1/1] A Thurd; Bites, stings, sad feelings (bad-news
→˓unread)

15.4 EXIT STATUS

This command supports the following special exit status codes

20 The requested format version is too old.

21 The requested format version is too new.

15.5 SEE ALSO

notmuch(1), notmuch-config(1), notmuch-count(1), notmuch-dump(1), notmuch-hooks(5), notmuch-insert(1),
notmuch-new(1), notmuch-reply(1), notmuch-restore(1), notmuch-search-terms(7), notmuch-show(1),
notmuch-tag(1) notmuch-address(1)

15.4. EXIT STATUS 39

notmuch, Release 0.30

40 Chapter 15. notmuch-search

CHAPTER 16

notmuch-search-terms

16.1 SYNOPSIS

notmuch count [option . . .] <search-term> . . .

notmuch dump [–gzip] [–format=(batch-tag|sup)] [–output=<file>] [–] [<search-term> . . .]

notmuch reindex [option . . .] <search-term> . . .

notmuch search [option . . .] <search-term> . . .

notmuch show [option . . .] <search-term> . . .

notmuch tag +<tag> . . . -<tag> [–] <search-term> . . .

16.2 DESCRIPTION

Several notmuch commands accept a common syntax for search terms.

The search terms can consist of free-form text (and quoted phrases) which will match all messages that contain all of
the given terms/phrases in the body, the subject, or any of the sender or recipient headers.

As a special case, a search string consisting of exactly a single asterisk (“*”) will match all messages.

16.2.1 Search prefixes

In addition to free text, the following prefixes can be used to force terms to match against specific portions of an email,
(where <brackets> indicate user-supplied values).

Some of the prefixes with <regex> forms can be also used to restrict the results to those whose value matches a regular
expression (see regex(7)) delimited with //, for example:

notmuch search 'from:"/bob@.*[.]example[.]com/"'

41

notmuch, Release 0.30

body:<word-or-quoted-phrase> Match terms in the body of messages.

from:<name-or-address> or from:/<regex>/ The from: prefix is used to match the name or address of the sender
of an email message.

to:<name-or-address> The to: prefix is used to match the names or addresses of any recipient of an email message,
(whether To, Cc, or Bcc).

subject:<word-or-quoted-phrase> or subject:/<regex>/ Any term prefixed with subject: will match only text from
the subject of an email. Searching for a phrase in the subject is supported by including quotation marks around
the phrase, immediately following subject:.

attachment:<word> The attachment: prefix can be used to search for specific filenames (or extensions) of attach-
ments to email messages.

mimetype:<word> The mimetype: prefix will be used to match text from the content-types of MIME parts within
email messages (as specified by the sender).

tag:<tag> or tag:/<regex>/ or is:<tag> or is:/<regex>/ For tag: and is: valid tag values include inbox and unread
by default for new messages added by notmuch new as well as any other tag values added manually with
notmuch tag.

id:<message-id> or mid:<message-id> or mid:/<regex>/ For id: and mid:, message ID values are the literal con-
tents of the Message-ID: header of email messages, but without the ‘<’, ‘>’ delimiters.

thread:<thread-id> The thread: prefix can be used with the thread ID values that are generated internally by not-
much (and do not appear in email messages). These thread ID values can be seen in the first column of output
from notmuch search

thread:{<notmuch query>} Threads may be searched for indirectly by providing an arbitrary notmuch query in {}.
For example, the following returns threads containing a message from mallory and one (not necessarily the same
message) with Subject containing the word “crypto”.

% notmuch search 'thread:"{from:mallory}" and thread:"{subject:crypto}"'

The performance of such queries can vary wildly. To understand this, the user should think of the query
thread:{<something>} as expanding to all of the thread IDs which match <something>; notmuch then per-
forms a second search using the expanded query.

path:<directory-path> or path:<directory-path>/** or path:/<regex>/ The path: prefix searches for email mes-
sages that are in particular directories within the mail store. The directory must be specified relative to the
top-level maildir (and without the leading slash). By default, path: matches messages in the specified direc-
tory only. The “/**” suffix can be used to match messages in the specified directory and all its subdirectories
recursively. path:”“ matches messages in the root of the mail store and, likewise, path:** matches all messages.

path: will find a message if any copy of that message is in the specific directory.

folder:<maildir-folder> or folder:/<regex>/ The folder: prefix searches for email messages by maildir or MH
folder. For MH-style folders, this is equivalent to path:. For maildir, this includes messages in the “new” and
“cur” subdirectories. The exact syntax for maildir folders depends on your mail configuration. For maildir++,
folder:”“ matches the inbox folder (which is the root in maildir++), other folder names always start with “.”,
and nested folders are separated by “.”s, such as folder:.classes.topology. For “file system” maildir, the inbox
is typically folder:INBOX and nested folders are separated by slashes, such as folder:classes/topology.

folder: will find a message if any copy of that message is in the specific folder.

date:<since>..<until> or date:<date> The date: prefix can be used to restrict the results to only messages within a
particular time range (based on the Date: header).

See DATE AND TIME SEARCH below for details on the range expression, and supported syntax for <since>
and <until> date and time expressions.

42 Chapter 16. notmuch-search-terms

notmuch, Release 0.30

The time range can also be specified using timestamps without including the date prefix using a syntax of:

<initial-timestamp>..<final-timestamp>

Each timestamp is a number representing the number of seconds since 1970-01-01 00:00:00 UTC. Specifying a
time range this way is considered legacy and predates the date prefix.

lastmod:<initial-revision>..<final-revision> The lastmod: prefix can be used to restrict the result by the database
revision number of when messages were last modified (tags were added/removed or filenames changed). This is
usually used in conjunction with the --uuid argument to notmuch search to find messages that have changed
since an earlier query.

query:<name> The query: prefix allows queries to refer to previously saved queries added with notmuch-config(1).

property:<key>=<value> The property: prefix searches for messages with a particular <key>=<value> property
pair. Properties are used internally by notmuch (and extensions) to add metadata to messages. A given key can
be present on a given message with several different values. See notmuch-properties(7) for more details.

User defined prefixes are also supported, see notmuch-config(1) for details.

16.2.2 Operators

In addition to individual terms, multiple terms can be combined with Boolean operators (and, or, not, and xor). Each
term in the query will be implicitly connected by a logical AND if no explicit operator is provided (except that terms
with a common prefix will be implicitly combined with OR). The shorthand ‘-<term>’ can be used for ‘not <term>’ but
unfortunately this does not work at the start of an expression. Parentheses can also be used to control the combination
of the Boolean operators, but will have to be protected from interpretation by the shell, (such as by putting quotation
marks around any parenthesized expression).

In addition to the standard boolean operators, Xapian provides several operators specific to text searching.

notmuch search term1 NEAR term2

will return results where term1 is within 10 words of term2. The threshold can be set like this:

notmuch search term1 NEAR/2 term2

The search

notmuch search term1 ADJ term2

will return results where term1 is within 10 words of term2, but in the same order as in the query. The threshold can
be set the same as with NEAR:

notmuch search term1 ADJ/7 term2

16.2.3 Stemming

Stemming in notmuch means that these searches

notmuch search detailed
notmuch search details
notmuch search detail

will all return identical results, because Xapian first “reduces” the term to the common stem (here ‘detail’) and then
performs the search.

16.2. DESCRIPTION 43

notmuch, Release 0.30

There are two ways to turn this off: a search for a capitalized word will be performed unstemmed, so that one can search
for “John” and not get results for “Johnson”; phrase searches are also unstemmed (see below for details). Stemming
is currently only supported for English. Searches for words in other languages will be performed unstemmed.

16.2.4 Wildcards

It is possible to use a trailing ‘*’ as a wildcard. A search for ‘wildc*’ will match ‘wildcard’, ‘wildcat’, etc.

16.2.5 Boolean and Probabilistic Prefixes

Xapian (and hence notmuch) prefixes are either boolean, supporting exact matches like “tag:inbox” or probabilistic,
supporting a more flexible term based searching. Certain special prefixes are processed by notmuch in a way not
strictly fitting either of Xapian’s built in styles. The prefixes currently supported by notmuch are as follows.

Boolean tag:, id:, thread:, folder:, path:, property:

Probabilistic body:, to:, attachment:, mimetype:

Special from:, query:, subject:

16.2.6 Terms and phrases

In general Xapian distinguishes between lists of terms and phrases. Phrases are indicated by double quotes (but
beware you probably need to protect those from your shell) and insist that those unstemmed words occur in that order.
One useful, but initially surprising feature is that the following are equivalent ways to write the same phrase.

• “a list of words”

• a-list-of-words

• a/list/of/words

• a.list.of.words

Both parenthesised lists of terms and quoted phrases are ok with probabilistic prefixes such as to:, from:, and subject:.
In particular

subject:(pizza free)

is equivalent to

subject:pizza and subject:free

Both of these will match a subject “Free Delicious Pizza” while

subject:"pizza free"

will not.

16.2.7 Quoting

Double quotes are also used by the notmuch query parser to protect boolean terms, regular expressions, or subqueries
containing spaces or other special characters, e.g.

44 Chapter 16. notmuch-search-terms

tag:inbox

notmuch, Release 0.30

tag:"a tag"

folder:"/^.*/(Junk|Spam)$/"

thread:"{from:mallory and date:2009}"

As with phrases, you need to protect the double quotes from the shell e.g.

% notmuch search 'folder:"/^.*/(Junk|Spam)$/"'
% notmuch search 'thread:"{from:mallory and date:2009}" and thread:{to:mallory}'

16.3 DATE AND TIME SEARCH

notmuch understands a variety of standard and natural ways of expressing dates and times, both in absolute terms
(“2012-10-24”) and in relative terms (“yesterday”). Any number of relative terms can be combined (“1 hour 25 min-
utes”) and an absolute date/time can be combined with relative terms to further adjust it. A non-exhaustive description
of the syntax supported for absolute and relative terms is given below.

16.3.1 The range expression

date:<since>..<until>

The above expression restricts the results to only messages from <since> to <until>, based on the Date: header.

<since> and <until> can describe imprecise times, such as “yesterday”. In this case, <since> is taken as the earliest
time it could describe (the beginning of yesterday) and <until> is taken as the latest time it could describe (the end of
yesterday). Similarly, date:january..february matches from the beginning of January to the end of February.

If specifying a time range using timestamps in conjunction with the date prefix, each timestamp must be preceded
by @ (ASCII hex 40). As above, each timestamp is a number representing the number of seconds since 1970-01-01
00:00:00 UTC. For example:

date:@<initial-timestamp>..@<final-timestamp>

Currently, spaces in range expressions are not supported. You can replace the spaces with ‘_’, or (in most cases) ‘-‘,
or (in some cases) leave the spaces out altogether. Examples in this man page use spaces for clarity.

Open-ended ranges are supported. I.e. it’s possible to specify date:..<until> or date:<since>.. to not limit the start or
end time, respectively.

16.3.2 Single expression

date:<expr> works as a shorthand for date:<expr>..<expr>. For example, date:monday matches from the beginning of
Monday until the end of Monday.

16.3.3 Relative date and time

[N|number] (years|months|weeks|days|hours|hrs|minutes|mins|seconds|secs) [. . .]

All refer to past, can be repeated and will be accumulated.

Units can be abbreviated to any length, with the otherwise ambiguous single m being m for minutes and M for months.

16.3. DATE AND TIME SEARCH 45

notmuch, Release 0.30

Number can also be written out one, two, . . . , ten, dozen, hundred. Additionally, the unit may be preceded by “last”
or “this” (e.g., “last week” or “this month”).

When combined with absolute date and time, the relative date and time specification will be relative from the specified
absolute date and time.

Examples: 5M2d, two weeks

16.3.4 Supported absolute time formats

• H[H]:MM[:SS] [(am|a.m.|pm|p.m.)]

• H[H] (am|a.m.|pm|p.m.)

• HHMMSS

• now

• noon

• midnight

• Examples: 17:05, 5pm

16.3.5 Supported absolute date formats

• YYYY-MM[-DD]

• DD-MM[-[YY]YY]

• MM-YYYY

• M[M]/D[D][/[YY]YY]

• M[M]/YYYY

• D[D].M[M][.[YY]YY]

• D[D][(st|nd|rd|th)] Mon[thname] [YYYY]

• Mon[thname] D[D][(st|nd|rd|th)] [YYYY]

• Wee[kday]

Month names can be abbreviated at three or more characters.

Weekday names can be abbreviated at three or more characters.

Examples: 2012-07-31, 31-07-2012, 7/31/2012, August 3

16.3.6 Time zones

• (+|-)HH:MM

• (+|-)HH[MM]

Some time zone codes, e.g. UTC, EET.

46 Chapter 16. notmuch-search-terms

notmuch, Release 0.30

16.4 SEE ALSO

notmuch(1), notmuch-config(1), notmuch-count(1), notmuch-dump(1), notmuch-hooks(5), notmuch-insert(1),
notmuch-new(1), notmuch-reindex(1), notmuch-properties(1), *notmuch-reply(1), notmuch-restore(1),
notmuch-search(1), *notmuch-show(1), notmuch-tag(1)

16.4. SEE ALSO 47

notmuch, Release 0.30

48 Chapter 16. notmuch-search-terms

CHAPTER 17

notmuch-show

17.1 SYNOPSIS

notmuch show [option . . .] <search-term> . . .

17.2 DESCRIPTION

Shows all messages matching the search terms.

See notmuch-search-terms(7) for details of the supported syntax for <search-terms>.

The messages will be grouped and sorted based on the threading (all replies to a particular message will appear
immediately after that message in date order). The output is not indented by default, but depth tags are printed so that
proper indentation can be performed by a post-processor (such as the emacs interface to notmuch).

Supported options for show include

--entire-thread=(true|false) If true, notmuch show outputs all messages in the thread of any mes-
sage matching the search terms; if false, it outputs only the matching messages. For --format=json and
--format=sexp this defaults to true. For other formats, this defaults to false.

--format=(text|json|sexp|mbox|raw)

text (default for messages) The default plain-text format has all text-content MIME parts decoded. Various
components in the output, (message, header, body, attachment, and MIME part), will be delimited by
easily-parsed markers. Each marker consists of a Control-L character (ASCII decimal 12), the name of
the marker, and then either an opening or closing brace, (‘{‘ or ‘}’), to either open or close the component.
For a multipart MIME message, these parts will be nested.

json The output is formatted with Javascript Object Notation (JSON). This format is more robust than the
text format for automated processing. The nested structure of multipart MIME messages is reflected in
nested JSON output. By default JSON output includes all messages in a matching thread; that is, by
default, --format=json sets --entire-thread. The caller can disable this behaviour by setting

49

notmuch, Release 0.30

--entire-thread=false. The JSON output is always encoded as UTF-8 and any message content
included in the output will be charset-converted to UTF-8.

sexp The output is formatted as the Lisp s-expression (sexp) equivalent of the JSON format above. Objects are
formatted as property lists whose keys are keywords (symbols preceded by a colon). True is formatted as
t and both false and null are formatted as nil. As for JSON, the s-expression output is always encoded
as UTF-8.

mbox All matching messages are output in the traditional, Unix mbox format with each message being prefixed
by a line beginning with “From ” and a blank line separating each message. Lines in the message content
beginning with “From ” (preceded by zero or more ‘>’ characters) have an additional ‘>’ character added.
This reversible escaping is termed “mboxrd” format and described in detail here:

http://homepage.ntlworld.com/jonathan.deboynepollard/FGA/mail-mbox-formats.html

raw (default if --part is given) Write the raw bytes of the given MIME part of a message to standard out.
For this format, it is an error to specify a query that matches more than one message.

If the specified part is a leaf part, this outputs the body of the part after performing content transfer decoding
(but no charset conversion). This is suitable for saving attachments, for example.

For a multipart or message part, the output includes the part headers as well as the body (including all child
parts). No decoding is performed because multipart and message parts cannot have non-trivial content
transfer encoding. Consumers of this may need to implement MIME decoding and similar functions.

--format-version=N Use the specified structured output format version. This is intended for programs that
invoke notmuch(1) internally. If omitted, the latest supported version will be used.

--part=N Output the single decoded MIME part N of a single message. The search terms must match only a single
message. Message parts are numbered in a depth-first walk of the message MIME structure, and are identified
in the ‘json’, ‘sexp’ or ‘text’ output formats.

Note that even a message with no MIME structure or a single body part still has two MIME parts: part 0 is the
whole message (headers and body) and part 1 is just the body.

--verify Compute and report the validity of any MIME cryptographic signatures found in the selected con-
tent (e.g., “multipart/signed” parts). Status of the signature will be reported (currently only supported with
--format=json and --format=sexp), and the multipart/signed part will be replaced by the signed data.

--decrypt=(false|auto|true|stash) If true, decrypt any MIME encrypted parts found in the selected
content (e.g., “multipart/encrypted” parts). Status of the decryption will be reported (currently only supported
with --format=json and --format=sexp) and on successful decryption the multipart/encrypted part will
be replaced by the decrypted content.

stash behaves like true, but upon successful decryption it will also stash the message’s session key in the
database, and index the cleartext of the message, enabling automatic decryption in the future.

If auto, and a session key is already known for the message, then it will be decrypted, but notmuch will not try
to access the user’s keys.

Use false to avoid even automatic decryption.

Non-automatic decryption (stash or true, in the absence of a stashed session key) expects a functioning
gpg-agent(1) to provide any needed credentials. Without one, the decryption will fail.

Note: setting either true or stash here implies --verify.

Here is a table that summarizes each of these policies:

50 Chapter 17. notmuch-show

http://homepage.ntlworld.com/jonathan.deboynepollard/FGA/mail-mbox-formats.html

notmuch, Release 0.30

false auto true stash
Show cleartext if session key is already known X X X
Use secret keys to show cleartext X X
Stash any newly recovered session keys, reindexing message if found X

Note: --decrypt=stash requires write access to the database. Otherwise, notmuch show operates en-
tirely in read-only mode.

Default: auto

--exclude=(true|false) Specify whether to omit threads only matching search.exclude_tags from the search
results (the default) or not. In either case the excluded message will be marked with the exclude flag (except
when output=mbox when there is nowhere to put the flag).

If --entire-thread is specified then complete threads are returned regardless (with the excluded flag
being set when appropriate) but threads that only match in an excluded message are not returned when
--exclude=true.

The default is --exclude=true.

--body=(true|false) If true (the default) notmuch show includes the bodies of the messages in the output; if
false, bodies are omitted. --body=false is only implemented for the text, json and sexp formats and it is
incompatible with --part > 0.

This is useful if the caller only needs the headers as body-less output is much faster and substantially smaller.

--include-html Include “text/html” parts as part of the output (currently only supported with
--format=text, --format=json and --format=sexp). By default, unless --part=N is used
to select a specific part or --include-html is used to include all “text/html” parts, no part with content type
“text/html” is included in the output.

A common use of notmuch show is to display a single thread of email messages. For this, use a search term of
“thread:<thread-id>” as can be seen in the first column of output from the notmuch search command.

17.3 EXIT STATUS

This command supports the following special exit status codes

20 The requested format version is too old.

21 The requested format version is too new.

17.4 SEE ALSO

notmuch(1), notmuch-config(1), notmuch-count(1), notmuch-dump(1), notmuch-hooks(5), notmuch-insert(1),
notmuch-new(1), notmuch-reply(1), notmuch-restore(1), notmuch-search(1), notmuch-search-terms(7),
notmuch-tag(1)

17.3. EXIT STATUS 51

notmuch, Release 0.30

52 Chapter 17. notmuch-show

CHAPTER 18

notmuch-tag

18.1 SYNOPSIS

notmuch tag [options . . .] +<tag>|-<tag> [–] <search-term> . . .

notmuch tag –batch [–input=<filename>]

18.2 DESCRIPTION

Add/remove tags for all messages matching the search terms.

See notmuch-search-terms(7) for details of the supported syntax for <search-term>.

Tags prefixed by ‘+’ are added while those prefixed by ‘-‘ are removed. For each message, tag changes are applied in
the order they appear on the command line.

The beginning of the search terms is recognized by the first argument that begins with neither ‘+’ nor ‘-‘. Support for
an initial search term beginning with ‘+’ or ‘-‘ is provided by allowing the user to specify a “–” argument to separate
the tags from the search terms.

notmuch tag updates the maildir flags according to tag changes if the maildir.synchronize_flags configuration option
is enabled. See notmuch-config(1) for details.

Supported options for tag include

--remove-all Remove all tags from each message matching the search terms before applying the tag changes
appearing on the command line. This means setting the tags of each message to the tags to be added. If there
are no tags to be added, the messages will have no tags.

--batch Read batch tagging operations from a file (stdin by default). This is more efficient than repeated notmuch
tag invocations. See TAG FILE FORMAT below for the input format. This option is not compatible with
specifying tagging on the command line.

--input=<filename> Read input from given file, instead of from stdin. Implies --batch.

53

notmuch, Release 0.30

18.3 TAG FILE FORMAT

The input must consist of lines of the format:

+<tag>|-<tag> [. . .] [–] <query>

Each line is interpreted similarly to notmuch tag command line arguments. The delimiter is one or more spaces ‘
‘. Any characters in <tag> may be hex-encoded with %NN where NN is the hexadecimal value of the character.
To hex-encode a character with a multi-byte UTF-8 encoding, hex-encode each byte. Any spaces in <tag> must be
hex-encoded as %20. Any characters that are not part of <tag> must not be hex-encoded.

In the future tag:”tag with spaces” style quoting may be supported for <tag> as well; for this reason all double quote
characters in <tag> should be hex-encoded.

The <query> should be quoted using Xapian boolean term quoting rules: if a term contains whitespace or a close paren
or starts with a double quote, it must be enclosed in double quotes (not including any prefix) and double quotes inside
the term must be doubled (see below for examples).

Leading and trailing space ‘ ‘ is ignored. Empty lines and lines beginning with ‘#’ are ignored.

18.3.1 EXAMPLE

The following shows a valid input to batch tagging. Note that only the isolated ‘*’ acts as a wildcard. Also note the
two different quotings of the tag space in tags

+winner *
+foo::bar%25 -- (One and Two) or (One and tag:winner)
+found::it -- tag:foo::bar%
ignore this line and the next

+space%20in%20tags -- Two
add tag '(tags)', among other stunts.
+crazy{ +(tags) +&are +#possible\ -- tag:"space in tags"
+match*crazy -- tag:crazy{
+some_tag -- id:"this is ""nauty)"""

18.4 SEE ALSO

notmuch(1), notmuch-config(1), notmuch-count(1), notmuch-dump(1), notmuch-hooks(5), notmuch-insert(1),
notmuch-new(1), notmuch-reply(1), notmuch-restore(1), notmuch-search(1), notmuch-search-terms(7),
notmuch-show(1),

54 Chapter 18. notmuch-tag

CHAPTER 19

Indices and tables

• genindex

• modindex

• search

55

	notmuch
	SYNOPSIS
	DESCRIPTION
	NOTE
	OPTIONS
	COMMANDS
	ENVIRONMENT
	SEE ALSO
	CONTACT

	notmuch-address
	SYNOPSIS
	DESCRIPTION
	EXIT STATUS
	SEE ALSO

	notmuch-compact
	SYNOPSIS
	DESCRIPTION
	ENVIRONMENT
	SEE ALSO

	notmuch-config
	SYNOPSIS
	DESCRIPTION
	ENVIRONMENT
	SEE ALSO

	notmuch-count
	SYNOPSIS
	DESCRIPTION
	SEE ALSO

	notmuch-dump
	SYNOPSIS
	DESCRIPTION
	SEE ALSO

	notmuch-emacs-mua
	SYNOPSIS
	DESCRIPTION
	ENVIRONMENT VARIABLES
	SEE ALSO

	notmuch-hooks
	SYNOPSIS
	DESCRIPTION
	SEE ALSO

	notmuch-insert
	SYNOPSIS
	DESCRIPTION
	EXIT STATUS
	SEE ALSO

	notmuch-new
	SYNOPSIS
	DESCRIPTION
	EXIT STATUS
	SEE ALSO

	notmuch-properties
	SYNOPSIS
	DESCRIPTION
	CONVENTIONS
	MESSAGE PROPERTIES
	SEE ALSO

	notmuch-reindex
	SYNOPSIS
	DESCRIPTION
	EXAMPLES
	SEE ALSO

	notmuch-reply
	SYNOPSIS
	DESCRIPTION
	EXIT STATUS
	SEE ALSO

	notmuch-restore
	SYNOPSIS
	DESCRIPTION
	GZIPPED INPUT
	SEE ALSO

	notmuch-search
	SYNOPSIS
	DESCRIPTION
	EXAMPLE
	EXIT STATUS
	SEE ALSO

	notmuch-search-terms
	SYNOPSIS
	DESCRIPTION
	DATE AND TIME SEARCH
	SEE ALSO

	notmuch-show
	SYNOPSIS
	DESCRIPTION
	EXIT STATUS
	SEE ALSO

	notmuch-tag
	SYNOPSIS
	DESCRIPTION
	TAG FILE FORMAT
	SEE ALSO

	Indices and tables

